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hi-ml

This toolbox helps to simplify and streamline work on deep learning models for healthcare and life sciences, by pro-
viding tested components (data loaders, pre-processing), deep learning models, and cloud integration tools.

The hi-ml toolbox provides

• Functionality to easily run Python code in Azure Machine Learning services

• Low-level and high-level building blocks for Machine Learning / AI researchers and practitioners.
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CHAPTER

ONE

FIRST STEPS: HOW TO RUN YOUR PYTHON CODE IN THE CLOUD

The simplest use case for the hi-ml toolbox is taking a script that you developed, and run it inside of Azure Machine
Learning (AML) services. This can be helpful because the cloud gives you access to massive GPU resource, you can
consume vast datasets, and access multiple machines at the same time for distributed training.

1.1 Setting up AzureML

You need to have an AzureML workspace in your Azure subscription. Download the config file from your AzureML
workspace, as described here. Put this file (it should be called config.json) into the folder where your script lives,
or one of its parent folders. You can use parent folders up to the last parent that is still included in the PYTHONPATH
environment variable: hi-ml will try to be smart and search through all folders that it thinks belong to your current
project.

1.2 Using the AzureML integration layer

Consider a simple use case, where you have a Python script that does something - this could be training a model, or
pre-processing some data. The hi-ml package can help easily run that on Azure Machine Learning (AML) services.

Here is an example script that reads images from a folder, resizes and saves them to an output folder:

from pathlib import Path
if __name__ == '__main__':

input_folder = Path("/tmp/my_dataset")
output_folder = Path("/tmp/my_output")
for file in input_folder.glob("*.jpg"):

contents = read_image(file)
resized = contents.resize(0.5)
write_image(output_folder / file.name)

Doing that at scale can take a long time. We’d like to run that script in AzureML, consume the data from a folder
in blob storage, and write the results back to blob storage, so that we can later use it as an input for model training.

You can achieve that by adding a call to submit_to_azure_if_needed from the hi-ml package:

from pathlib import Path
from health_azure import submit_to_azure_if_needed
if __name__ == '__main__':

current_file = Path(__file__)
run_info = submit_to_azure_if_needed(compute_cluster_name="preprocess-ds12",

(continues on next page)

3

https://docs.microsoft.com/en-us/azure/machine-learning/how-to-configure-environment


hi-ml

(continued from previous page)

input_datasets=["images123"],
# Omit this line if you don't create an output␣

→˓dataset (for example, in
# model training scripts)
output_datasets=["images123_resized"],
default_datastore="my_datastore")

# When running in AzureML, run_info.input_datasets and run_info.output_datasets will␣
→˓be populated,
# and point to the data coming from blob storage. For runs outside AML, the paths␣

→˓will be None.
# Replace the None with a meaningful path, so that we can still run the script␣

→˓easily outside AML.
input_dataset = run_info.input_datasets[0] or Path("/tmp/my_dataset")
output_dataset = run_info.output_datasets[0] or Path("/tmp/my_output")
files_processed = []
for file in input_dataset.glob("*.jpg"):

contents = read_image(file)
resized = contents.resize(0.5)
write_image(output_dataset / file.name)
files_processed.append(file.name)

# Any other files that you would not consider an "output dataset", like metrics, etc,
→˓ should be written to
# a folder "./outputs". Any files written into that folder will later be visible in␣

→˓the AzureML UI.
# run_info.output_folder already points to the correct folder.
stats_file = run_info.output_folder / "processed_files.txt"
stats_file.write_text("\n".join(files_processed))

Once these changes are in place, you can submit the script to AzureML by supplying an additional --azureml flag on
the commandline, like python myscript.py --azureml.

Note that you do not need to modify the argument parser of your script to recognize the --azureml flag.

1.3 Essential arguments to submit_to_azure_if_needed

When calling submit_to_azure_if_needed, you can to supply the following parameters:

• compute_cluster_name (Mandatory): The name of the AzureML cluster that should run the job. This can
be a cluster with CPU or GPU machines. See here for documentation

• entry_script: The script that should be run. If omitted, the hi-ml package will assume that you would like
to submit the script that is presently running, given in sys.argv[0].

• snapshot_root_directory: The directory that contains all code that should be packaged and sent to
AzureML. All Python code that the script uses must be copied over. This defaults to the current work-
ing directory, but can be one of its parents. If you would like to explicitly skip some folders inside the
snapshot_root_directory, then use ignored_folders to specify those.

• conda_environment_file: The conda configuration file that describes which packages are necessary for your
script to run. If omitted, the hi-ml package searches for a file called environment.yml in the current folder or
its parents.

You can also supply an input dataset. For data pre-processing scripts, you can add an output dataset (omit this for ML
training scripts).
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• To use datasets, you need to provision a data store in your AML workspace, that points to your training data in
blob storage. This is described here.

• input_datasets=["images123"] in the code above means that the script will consume all data in folder
images123 in blob storage as the input. The folder must exist in blob storage, in the location that you gave when
creating the datastore. Once the script has run, it will also register the data in this folder as an AML dataset.

• output_datasets=["images123_resized"] means that the script will create a temporary folder when run-
ning in AML, and while the job writes data to that folder, upload it to blob storage, in the data store.

For more examples, please see examples.md. For more details about datasets, see here.

1.4 Additional arguments you should know about

submit_to_azure_if_needed has a large number of arguments, please check the API documentation for an exhaus-
tive list. The particularly helpful ones are listed below.

• experiment_name: All runs in AzureML are grouped in “experiments”. By default, the experiment name is
determined by the name of the script you submit, but you can specify a name explicitly with this argument.

• environment_variables: A dictionary with the contents of all environment variables that should be set inside
the AzureML run, before the script is started.

• docker_base_image: This specifies the name of the Docker base image to use for creating the Python environ-
ment for your script. The amount of memory to allocate for Docker is given by docker_shm_size.

• num_nodes: The number of nodes on which your script should run. This is essential for distributed training.

• tags: A dictionary mapping from string to string, with additional tags that will be stored on the AzureML run.
This is helpful to add metadata about the run for later use.

1.5 Conda environments, Alternate pips, Private wheels

The function submit_to_azure_if_needed tries to locate a Conda environment file in the current folder, or in the
Python path, with the name environment.yml. The actual Conda environment file to use can be specified directly
with:

run_info = submit_to_azure_if_needed(
...
conda_environment_file=conda_environment_file,

where conda_environment_file is a pathlib.Path or a string identifying the Conda environment file to use.

The basic use of Conda assumes that packages listed are published Conda packages or published Python packages on
PyPI. However, during development, the Python package may be on Test.PyPI, or in some other location, in which case
the alternative package location can be specified directly with:

run_info = submit_to_azure_if_needed(
...
pip_extra_index_url="https://test.pypi.org/simple/",

Finally, it is possible to use a private wheel, if the package is only available locally with:

1.4. Additional arguments you should know about 5
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run_info = submit_to_azure_if_needed(
...
private_pip_wheel_path=private_pip_wheel_path,

where private_pip_wheel_path is a pathlib.Path or a string identifying the wheel package to use. In this case,
this wheel will be copied to the AzureML environment as a private wheel.
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CHAPTER

TWO

CONNECTING TO AZURE

2.1 Authentication

The hi-ml package uses two possible ways of authentication with Azure. The default is what is called “Interactive
Authentication”. When you submit a job to Azure via hi-ml, this will use the credentials you used in the browser when
last logging into Azure. If there are no credentials yet, you should see instructions printed out to the console about how
to log in using your browser.

We recommend using Interactive Authentication.

Alternatively, you can use a so-called Service Principal, for example within build pipelines.

2.2 Service Principal Authentication

A Service Principal is a form of generic identity or machine account. This is essential if you would like to submit
training runs from code, for example from within an Azure pipeline. You can find more information about application
registrations and service principal objects here.

If you would like to use Service Principal, you will need to create it in Azure first, and then store 3 pieces of information
in 3 environment variables — please see the instructions below. When all the 3 environment variables are in place,
your Azure submissions will automatically use the Service Principal to authenticate.

2.2.1 Creating the Service Principal

1. Navigate back to aka.ms/portal

2. Navigate to App registrations (use the top search bar to find it).

3. Click on + New registration on the top left of the page.

4. Choose a name for your application e.g. MyServicePrincipal and click Register.

5. Once it is created you will see your application in the list appearing under App registrations. This step might
take a few minutes.

6. Click on the resource to access its properties. In particular, you will need the application ID. You can find this
ID in the Overview tab (accessible from the list on the left of the page).

7. Create an environment variable called HIML_SERVICE_PRINCIPAL_ID, and set its value to the application ID
you just saw.

8. You need to create an application secret to access the resources managed by this service principal. On the pane
on the left find Certificates & Secrets. Click on + New client secret (bottom of the page), note down
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your token. Warning: this token will only appear once at the creation of the token, you will not be able to
re-display it again later.

9. Create an environment variable called HIML_SERVICE_PRINCIPAL_PASSWORD, and set its value to the token
you just added.

2.2.2 Providing permissions to the Service Principal

Now that your service principal is created, you need to give permission for it to access and manage your AzureML
workspace. To do so:

1. Go to your AzureML workspace. To find it you can type the name of your workspace in the search bar above.

2. On the Overview page, there is a link to the Resource Group that contains the workspace. Click on that.

3. When on the Resource Group, navigate to Access control. Then click on + Add > Add role assignment.
A pane will appear on the the right. Select Role > Contributor. In the Select field type the name of your
Service Principal and select it. Finish by clicking Save at the bottom of the pane.

2.2.3 Azure Tenant ID

The last remaining piece is the Azure tenant ID, which also needs to be available in an environment variable. To get
that ID:

1. Log into Azure

2. Via the search bar, find “Azure Active Directory” and open it.

3. In the overview of that, you will see a field “Tenant ID”

4. Create an environment variable called HIML_TENANT_ID, and set that to the tenant ID you just saw.

8 Chapter 2. Connecting to Azure



CHAPTER

THREE

DATASETS

3.1 Key concepts

We’ll first outline a few concepts that are helpful for understanding datasets.

3.1.1 Blob Storage

Firstly, there is Azure Blob Storage. Each blob storage account has multiple containers - you can think of containers as
big disks that store files. The hi-ml package assumes that your datasets live in one of those containers, and each top
level folder corresponds to one dataset.

3.1.2 AzureML Data Stores

Secondly, there are data stores. This is a concept coming from Azure Machine Learning, described here. Data stores
provide access to one blob storage account. They exist so that the credentials to access blob storage do not have to be
passed around in the code - rather, the credentials are stored in the data store once and for all.

You can view all data stores in your AzureML workspace by clicking on one of the bottom icons in the left-hand
navigation bar of the AzureML studio.

One of these data stores is designated as the default data store.

3.1.3 AzureML Datasets

Thirdly, there are datasets. Again, this is a concept coming from Azure Machine Learning. A dataset is defined by

• A data store

• A set of files accessed through that data store

You can view all datasets in your AzureML workspace by clicking on one of the icons in the left-hand navigation bar
of the AzureML studio.
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3.1.4 Preparing data

To simplify usage, the hi-ml package creates AzureML datasets for you. All you need to do is to

• Create a blob storage account for your data, and within it, a container for your data.

• Create a data store that points to that storage account, and store the credentials for the blob storage account in it

From that point on, you can drop a folder of files in the container that holds your data. Within the hi-ml package, just
reference the name of the folder, and the package will create a dataset for you, if it does not yet exist.

3.2 Using the datasets

The simplest way of specifying that your script uses a folder of data from blob storage is as follows: Add the
input_datasets argument to your call of submit_to_azure_if_needed like this:

from health_azure import submit_to_azure_if_needed
run_info = submit_to_azure_if_needed(...,

input_datasets=["my_folder"],
default_datastore="my_datastore")

input_folder = run_info.input_datasets[0]

What will happen under the hood?

• The toolbox will check if there is already an AzureML dataset called “my_folder”. If so, it will use that. If there
is no dataset of that name, it will create one from all the files in blob storage in folder “my_folder”. The dataset
will be created using the data store provided, “my_datastore”.

• Once the script runs in AzureML, it will download the dataset “my_folder” to a temporary folder.

• You can access this temporary location by run_info.input_datasets[0], and read the files from it.

More complicated setups are described below.

3.2.1 Input and output datasets

Any run in AzureML can consume a number of input datasets. In addition, an AzureML run can also produce an output
dataset (or even more than one).

Output datasets are helpful if you would like to run, for example, a script that transforms one dataset into another.

You can use that via the output_datasets argument:

from health_azure import submit_to_azure_if_needed
run_info = submit_to_azure_if_needed(...,

input_datasets=["my_folder"],
output_datasets=["new_dataset"],
default_datastore="my_datastore")

input_folder = run_info.input_datasets[0]
output_folder = run_info.output_datasets[0]

Your script can now read files from input_folder, transform them, and write them to output_folder. The latter
will be a folder on the temp file system of the machine. At the end of the script, the contents of that temp folder will be
uploaded to blob storage, and registered as a dataset.

10 Chapter 3. Datasets
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3.2.2 Mounting and downloading

An input dataset can be downloaded before the start of the actual script run, or it can be mounted. When mounted, the
files are accessed via the network once needed - this is very helpful for large datasets where downloads would create a
long waiting time before the job start.

Similarly, an output dataset can be uploaded at the end of the script, or it can be mounted. Mounting here means that
all files will be written to blob storage already while the script runs (rather than at the end).

Note: If you are using mounted output datasets, you should NOT rename files in the output folder.

Mounting and downloading can be triggered by passing in DatasetConfig objects for the input_datasets argu-
ment, like this:

from health_azure import DatasetConfig, submit_to_azure_if_needed
input_dataset = DatasetConfig(name="my_folder", datastore="my_datastore", use_
→˓mounting=True)
output_dataset = DatasetConfig(name="new_dataset", datastore="my_datastore", use_
→˓mounting=True)
run_info = submit_to_azure_if_needed(...,

input_datasets=[input_dataset],
output_datasets=[output_dataset])

input_folder = run_info.input_datasets[0]
output_folder = run_info.output_datasets[0]

3.2.3 Local execution

For debugging, it is essential to have the ability to run a script on a local machine, outside of AzureML. Clearly, your
script needs to be able to access data in those runs too.

There are two ways of achieving that: Firstly, you can specific an equivalent local folder in the DatasetConfig objects:

from pathlib import Path
from health_azure import DatasetConfig, submit_to_azure_if_needed
input_dataset = DatasetConfig(name="my_folder",

datastore="my_datastore",
local_folder=Path("/datasets/my_folder_local"))

run_info = submit_to_azure_if_needed(...,
input_datasets=[input_dataset])

input_folder = run_info.input_datasets[0]

Secondly, you can check the returned path in run_info, and replace it with something for local execution. run_info.
input_datasets[0] will be None if the script runs outside of AzureML, and no local_folder is available.

from pathlib import Path
from health_azure import submit_to_azure_if_needed
run_info = submit_to_azure_if_needed(...,

input_datasets=["my_folder"],
default_datastore="my_datastore")

input_folder = run_info.input_datasets[0] or Path("/datasets/my_folder_local")

3.2. Using the datasets 11
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3.2.4 Making a dataset available at a fixed folder location

Occasionally, scripts expect the input dataset at a fixed location, for example, data is always read from /tmp/mnist.
AzureML has the capability to download/mount a dataset to such a fixed location. With the hi-ml package, you can
trigger that behaviour via an additional option in the DatasetConfig objects:

from health_azure import DatasetConfig, submit_to_azure_if_needed
input_dataset = DatasetConfig(name="my_folder",

datastore="my_datastore",
use_mounting=True,
target_folder="/tmp/mnist")

run_info = submit_to_azure_if_needed(...,
input_datasets=[input_dataset])

# Input_folder will now be "/tmp/mnist"
input_folder = run_info.input_datasets[0]

3.2.5 Dataset versions

AzureML datasets can have versions, starting at 1. You can view the different versions of a dataset in the AzureML
workspace. In the hi-ml toolbox, you would always use the latest version of a dataset unless specified otherwise. If
you do need a specific version, use the version argument in the DatasetConfig objects:

from health_azure import DatasetConfig, submit_to_azure_if_needed
input_dataset = DatasetConfig(name="my_folder",

datastore="my_datastore",
version=7)

run_info = submit_to_azure_if_needed(...,
input_datasets=[input_dataset])

input_folder = run_info.input_datasets[0]

12 Chapter 3. Datasets



CHAPTER

FOUR

HYPERPARAMETER SEARCH VIA HYPERDRIVE

HyperDrive runs can start multiple AzureML jobs in parallel. This can be used for tuning hyperparameters, or exe-
cuting multiple training runs for cross validation. To use that with the hi-ml package, simply supply a HyperDrive
configuration object as an additional argument. Note that this object needs to be created with an empty run_config
argument (this will later be replaced with the correct run_config that submits your script.)

The example below shows a hyperparameter search that aims to minimize the validation loss val_loss, by choosing
one of three possible values for the learning rate commandline argument learning_rate.

from azureml.core import ScriptRunConfig
from azureml.train.hyperdrive import GridParameterSampling, HyperDriveConfig,␣
→˓PrimaryMetricGoal, choice
from health_azure import submit_to_azure_if_needed
hyperdrive_config = HyperDriveConfig(

run_config=ScriptRunConfig(source_directory=""),
hyperparameter_sampling=GridParameterSampling(

parameter_space={
"learning_rate": choice([0.1, 0.01, 0.001])

}),
primary_metric_name="val_loss",
primary_metric_goal=PrimaryMetricGoal.MINIMIZE,
max_total_runs=5

)
submit_to_azure_if_needed(..., hyperdrive_config=hyperdrive_config)

For further examples, please check the example scripts here, and the HyperDrive documentation.
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CHAPTER

FIVE

USING CHEAP LOW PRIORITY VMS

By using Low Priority machines in AzureML, we can run training at greatly reduced costs (around 20% of the original
price, see references below for details). This comes with the risk, though, of having the job interrupted and later
re-started. This document describes the inner workings of Low Priority compute, and how to best make use of it.

Because the jobs can get interrupted, low priority machines are not suitable for production workload where time is
critical. They do offer a lot of benefits though for long-running training jobs or large scale experimentation, that would
otherwise be expensive to carry out.

5.1 Setting up the Compute Cluster

Jobs in Azure Machine Learning run in a “compute cluster”. When creating a compute cluster, we can specify the
size of the VM, the type and number of GPUs, etc. Doing this via the AzureML UI is described here. Doing it
programmatically is described here

One of the setting to tweak when creating the compute cluster is whether the machines are “Dedicated” or “Low
Priority”:

• Dedicated machines will be permanently allocated to your compute cluster. The VMs in a dedicated cluster will
be always available, unless the cluster is set up in a way that it removes idle machine. Jobs will not be interrupted.

• Low priority machines effectively make use of spare capacity in the data centers, you can think of them as
“dedicated machines that are presently idle”. They are available at a much lower price (around 20% of the price
of a dedicated machine). These machines are made available to you until they are needed as dedicated machines
somewhere else.

In order to get a compute cluster that operates at the lowest price point, choose

• Low priority machines

• Set “Minimum number of nodes” to 0, so that the cluster removes all idle machines if no jobs are running.

For details on pricing, check this Azure price calculator, choose “Category: GPU”. The price for low priority VMs is
given in the “Spot” column
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5.2 Behaviour of Low Priority VMs

Jobs can be interrupted at any point, this is called “low priority preemption”. When interrupted, the job stops - there
is no signal that we can make use of to do cleanup or something. All the files that the job has produced up to that point
in the outputs and logs folders will be saved to the cloud.

At some later point, the job will be assigned a virtual machine again. When re-started, all the files that the job had
produced in its previous run will be available on disk again where they were before interruption, mounted at the same
path. That is, if the interrupted job wrote a file outputs/foo.txt, this file will be accessible as outputs/foo.txt
also after the restart.

Note that all AzureML-internal log files that the job produced in a previous run will be overwritten (this behaviour
may change in the future). That is in contrast to the behaviour for metrics that the interrupted job had saved to AzureML
already (for example, metrics written by a call like Run.log("loss", loss_tensor.item())): Those metrics are
already stored in AzureML, and will still be there when the job restarts. The re-started job will then append to the
metrics that had been written in the previous run. This typically shows as sudden jumps in metrics, as illustrated here:

In this example, the learning rate
was increasing for the first 6 or so epochs. Then the job got preempted, and started training from scratch, with the initial
learning rate and schedule. Note that this behaviour is only an artifact of how the metrics are stored in AzureML, the
actual training is doing the right thing.

How do you verify that your job got interrupted? Usually, you would see a warning displayed on the job page in the
AzureML UI, that says something along the lines of “Low priority compute preemption warning: a node has been
preempted.” . You can use kinks in metrics as another indicator that your job got preempted: Sudden jumps in metrics
after which the metric follows a shape similar to the one at job start usually indicates low priority preemption.

Note that a job can be interrupted more than one time.

16 Chapter 5. Using Cheap Low Priority VMs
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5.3 Best Practice Guide for Your Jobs

In order to make best use of low priority compute, your code needs to be made resilient to restarts. Essentially, this
means that it should write regular checkpoints, and try to use those checkpoint files if they already exist. Examples of
how to best do that are given below.

In addition, you need to bear in mind that the job can be interrupted at any moment, for example when it is busy
uploading huge checkpoint files to Azure. When trying to upload again after restart, there can be resource collisions.

5.3.1 Writing and Using Recovery Checkpoints

When using PyTorch Lightning, you can add a checkpoint callback to your trainer, that ensures that you save the model
and optimizer to disk in regular intervals. This callback needs to be added to your Trainer object. Note that these
recovery checkpoints need to be written to the outputs folder, because only files in this folder get saved to Azure
automatically when the job gets interrupted.

When starting training, your code needs to check if there is already a recovery checkpoint present on disk. If so, training
should resume from that point.

Here is a code snippet that illustrates all that:

import re
from pathlib import Path
import numpy as np
from health_ml.utils import AzureMLLogger
from pytorch_lightning import Trainer
from pytorch_lightning.callbacks import ModelCheckpoint

RECOVERY_CHECKPOINT_FILE_NAME = "recovery_"
CHECKPOINT_FOLDER = "outputs/checkpoints"

def get_latest_recovery_checkpoint():
all_recovery_files = [f for f in Path(CHECKPOINT_FOLDER).glob(RECOVERY_CHECKPOINT_

→˓FILE_NAME + "*")]
if len(all_recovery_files) == 0:

return None
# Get recovery checkpoint with highest epoch number
recovery_epochs = [int(re.findall(r"[\d]+", f.stem)[0]) for f in all_recovery_files]
idx_max_epoch = int(np.argmax(recovery_epochs))
return str(all_recovery_files[idx_max_epoch])

recovery_checkpoint = ModelCheckpoint(dirpath=CHECKPOINT_FOLDER,
filename=RECOVERY_CHECKPOINT_FILE_NAME + "{epoch}",
period=10)

trainer = Trainer(default_root_dir="outputs",
callbacks=[recovery_checkpoint],
logger=[AzureMLLogger()],
resume_from_checkpoint=get_latest_recovery_checkpoint())

5.3. Best Practice Guide for Your Jobs 17
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5.4 Additional Optimizers and Other State

In order to be resilient to interruption, your jobs need to save all their state to disk. In PyTorch Lightning training, this
would include all optimizers that you are using. The “normal” optimizer for model training is saved to the checkpoint
by Lightning already. However, you may be using callbacks or other components that maintain state. As an example,
training a linear head for self-supervised learning can be done in a callback, and that callback can have its own optimizer.
Such callbacks need to correctly implement the on_save_checkpoint method to save their state to the checkpoint,
and on_load_checkpoint to load it back in.

For more information about persisting state, check the PyTorch Lightning documentation .

18 Chapter 5. Using Cheap Low Priority VMs
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CHAPTER

SIX

COMMANDLINE TOOLS

6.1 Run TensorBoard

From the command line, run the command

himl-tb

specifying one of [--experiment] [--latest_run_file] [--run_recovery_ids] [--run_ids]

This will start a TensorBoard session, by default running on port 6006. To use an alternative port, specify this with
--port.

If --experiment is provided, the most recent Run from this experiment will be visualised. If --latest_run_file
is provided, the script will expect to find a RunId in this file. Alternatively you can specify the Runs to visualise via
--run_recovery_ids or --run_ids.

By default, this tool expects that your TensorBoard logs live in a folder named ‘logs’ and will create a similarly named
folder in your root directory. If your TensorBoard logs are stored elsewhere, you can specify this with the --log_dir
argument.

If you choose to specify --experiment, you can also specify --num_runs to view and/or --tags to filter by.

If your AML config path is not ROOT_DIR/config.json, you must also specify --config_file.

To see an example of how to create TensorBoard logs using PyTorch on AML, see the AML submitting script which
submits the following pytorch sample script. Note that to run this, you’ll need to create an environment with pytorch
and tensorboard as dependencies, as a minimum. See an example conda environemnt. This will create an experiment
named ‘tensorboard_test’ on your Workspace, with a single run. Go to outputs + logs -> outputs to see the tensorboard
events file.

6.2 Download files from AML Runs

From the command line, run the command

himl-download

specifying one of [--experiment] [--latest_run_file] [--run_recovery_ids] [--run_ids]

If --experiment is provided, the most recent Run from this experiment will be downloaded. If --latest_run_file
is provided, the script will expect to find a RunId in this file. Alternatively you can specify the Run to download via
--run_recovery_ids or --run_ids.

The files associated with your Run will be downloaded to the location specified with --output_dir (by default
ROOT_DIR/outputs)

If you choose to specify --experiment, you can also specify --tags to filter by.

19



hi-ml

If your AML config path is not ROOT_DIR/config.json, you must also specify --config_file.
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CHAPTER

SEVEN

DOWNLOADING FROM/ UPLOADING TO AZURE ML

All of the below functions will attempt to find a current workspace, if running in Azure ML, or else will attempt to
locate ‘config.json’ file in the current directory, and its parents. Alternatively, you can specify your own Workspace
object or a path to a file containing the workspace settings.

7.1 Download files from an Azure ML Run

To download all files from an AML Run, given its run id, perform the following:

from pathlib import Path
from health_azure import download_files_from_run_id
run_id = "example_run_id_123"
output_folder = Path("path/to/save")
download_files_from_run_id(run_id, output_folder)

Here, “path_to_save” represents the folder in which we want the downloaded files to be stored. E.g. if your run contains
the files [“abc/def/1.txt”, “abc/2.txt”] and you specify the prefix “abc” and the output_folder “my_outputs”, you’ll end
up with the files [“my_outputs/abc/def/1.txt”, “my_outputs/abc/2.txt”]

If you wish to specify the file name(s) to be downloaded, you can do so with the “prefix” parameter. E.g. pre-
fix=”outputs” will download all files within the “output” folder, if such a folder exists within your Run.

There is an additional parameter, “validate_checksum” which defaults to False. If True, will validate MD5 hash of the
data arriving (in chunks) to that being sent.

Note that if your code is running in a distributed manner, files will only be downloaded onto nodes with local rank = 0.
E.g. if you have 2 nodes each running 4 processes, the file will be downloaded by CPU/GPU 0 on each of the 2 nodes.
All processes will be synchronized to only exit the downloading method once it has completed on all nodes/ranks.

7.2 Downloading checkpoint files from a run

To download checkpoint files from an Azure ML Run, perform the following:

from pathlib import Path
from health_azure import download_checkpoints_from_run_id
download_checkpoints_from_run_id("example_run_id_123", Path("path/to/checkpoint/directory
→˓"))

All files within the checkpoint directory will be downloaded into the folder specified by “path/to/checkpoint_directory”.
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Since checkpoint files are often large and therefore prone to corruption during download, by default, this function will
validate the MD5 hash of the data downloaded (in chunks) compared to that being sent.

Note that if your code is running in a distributed manner, files will only be downloaded onto nodes with local rank = 0.
E.g. if you have 2 nodes each running 4 processes, the file will be downloaded by CPU/GPU 0 on each of the 2 nodes.
All processes will be synchronized to only exit the downloading method once it has completed on all nodes/ranks.

7.3 Downloading files from an Azure ML Datastore

To download data from an Azure ML Datastore within your Workspace, follow this example:

from pathlib import Path
from health_azure import download_from_datastore
download_from_datastore("datastore_name", "prefix", Path("path/to/output/directory") )

where “prefix” represents the path to the file(s) to be downloaded, relative to the datastore “datastore_name”. Azure will
search for files within the Datastore whose paths begin with this string. If you wish to download multiple files from the
same folder, set equal to that folder’s path within the Datastore. If you wish to download a single file, include both the
path to the folder it resides in, as well as the filename itself. If the relevant file(s) are found, they will be downloaded
to the folder specified by <output_folder>. If this directory does not already exist, it will be created. E.g. if your
datastore contains the paths [“foo/bar/1.txt”, “foo/bar/2.txt”] and you call this function with file_prefix=”foo/bar” and
output_folder=”outputs”, you would end up with the files [“outputs/foo/bar/1.txt”, “outputs/foo/bar/2.txt”]

This function takes additional parameters “overwrite” and “show_progress”. If True, overwrite will overwrite any
existing local files with the same path. If False and there is a duplicate file, it will skip this file. If show_progress is set
to True, the progress of the file download will be visible in the terminal.

7.4 Uploading files to an Azure ML Datastore

To upload data to an Azure ML Datastore within your workspace, perform the following:

from pathlib import Path
from health_azure import upload_to_datastore
upload_to_datastore("datastore_name", Path("path/to/local/data/folder"), Path("path/to/
→˓datastore/folder") )

Where “datastore_name” is the name of the registered Datastore within your workspace that you wish to upload to and
“path/to/datastore/folder” is the relative path within this Datastore that you wish to upload data to. Note that the path to
local data must be a folder, not a single path. The folder name will not be included in the remote path. E.g. if you specify
the local_data_dir=”foo/bar” and that contains the files [“1.txt”, “2.txt”], and you specify the remote_path=”baz”, you
would see the following paths uploaded to your Datastore: [“baz/1.txt”, “baz/2.txt”]

This function takes additional parameters “overwrite” and “show_progress”. If True, overwrite will overwrite any
existing remote files with the same path. If False and there is a duplicate file, it will skip this file. If show_progress is
set to True, the progress of the file upload will be visible in the terminal.
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CHAPTER

EIGHT

EXAMPLES

Note: All examples below contain links to sample scripts that are also included in the repository. The experience is
optimized for use on readthedocs. When navigating to the sample scripts on the github UI, you will only see the .rst
file that links to the .py file. To access the .py file, go to the folder that contains the respective .rst file.

8.1 Basic integration

The sample examples/1/sample.py is a script that takes an optional command line argument of a target value and prints
all the prime numbers up to (but not including) this target. It is simply intended to demonstrate a long running operation
that we want to run in Azure. Run it using e.g.

cd examples/1
python sample.py -n 103

The sample examples/2/sample.py shows the minimal modifications to run this in AzureML. Firstly create an AzureML
workspace and download the config file, as explained here. The config file should be placed in the same folder as the
sample script. A sample Conda environment file is supplied. Import the hi-ml package into the current environment.
Finally add the following to the sample script:

from health_azure import submit_to_azure_if_needed
...

def main() -> None:
_ = submit_to_azure_if_needed(

compute_cluster_name="lite-testing-ds2",
wait_for_completion=True,
wait_for_completion_show_output=True)

Replace lite-testing-ds2 with the name of a compute cluster created within the AzureML workspace. If this script
is invoked as the first sample, e.g.

cd examples/2
python sample.py -n 103

then the output will be exactly the same. But if the script is invoked as follows:

cd examples/2
python sample.py -n 103 --azureml

then the function submit_to_azure_if_needed will perform all the required actions to run this script in AzureML
and exit. Note that:

• code after submit_to_azure_if_needed is not run locally, but it is run in AzureML.
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• the print statement prints to the AzureML console output and is available in the Output + logs tab of the
experiment in the 70_driver_log.txt file, and can be downloaded from there.

• the command line arguments are passed through (apart from –azureml) when running in AzureML.

• a new file: most_recent_run.txt will be created containing an identifier of this AzureML run.

A sample script examples/2/results.py demonstrates how to programmatically download the driver log file.

8.2 Output files

The sample examples/3/sample.py demonstrates output file handling when running on AzureML. Because each run is
performed in a separate VM or cluster then any file output is not generally preserved. In order to keep the output it
should be written to the outputs folder when running in AzureML. The AzureML infrastructure will preserve this
and it will be available for download from the outputs folder in the Output + logs tab.

Make the following additions:

from health_azure import submit_to_azure_if_needed
run_info = submit_to_azure_if_needed(
...
parser.add_argument("-o", "--output", type=str, default="primes.txt", required=False,

→˓ help="Output file name")
...
output = run_info.output_folder / args.output
output.write_text("\n".join(map(str, primes)))

When running locally submit_to_azure_if_needed will create a subfolder called outputs and then the output can
be written to the file args.output there. When running in AzureML the output will be available in the file args.
output in the Experiment.

A sample script examples/3/results.py demonstrates how to programmatically download the output file.

8.3 Output datasets

The sample examples/4/sample.py demonstrates output dataset handling when running on AzureML.

In this case, the following parameters are added to submit_to_azure_if_needed:

from health_azure import submit_to_azure_if_needed
run_info = submit_to_azure_if_needed(

...
default_datastore="himldatasets",
output_datasets=["himl_sample4_output"],

The default_datastore is required if using the simplest configuration for an output dataset, to just use the blob
container name. There is an alternative that doesn’t require the default_datastore and allows a different datastore
for each dataset:

from health_azure import DatasetConfig, submit_to_azure_if_needed
...
run_info = submit_to_azure_if_needed(

...
output_datasets=[DatasetConfig(name="himl_sample4_output", datastore=

→˓"himldatasets")] (continues on next page)
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(continued from previous page)

Now the output folder is constructed as follows:

output_folder = run_info.output_datasets[0] or Path("outputs") / "himl_sample4_output
→˓"

output_folder.mkdir(parents=True, exist_ok=True)
output = output_folder / args.output

When running in AzureML run_info.output_datasets[0] will be populated using the new parameter and the
output will be written to that blob storage. When running locally run_info.output_datasets[0] will be None and
a local folder will be created and used.

A sample script examples/4/results.py demonstrates how to programmatically download the output dataset file.

For more details about datasets, see here

8.4 Input datasets

This example trains a simple classifier on a toy dataset, first creating the dataset files and then in a second script training
the classifier.

The script examples/5/inputs.py is provided to prepare the csv files. Run the script to download the Iris dataset and
create two CSV files:

cd examples/5
python inputs.py

The training script examples/5/sample.py is modified from https://github.com/Azure/MachineLearningNotebooks/
blob/master/how-to-use-azureml/ml-frameworks/scikit-learn/train-hyperparameter-tune-deploy-with-sklearn/train_
iris.py to work with input csv files. Start it to train the actual classifier, based on the data files that were just written:

cd examples/5
python sample.py

8.4.1 Including input files in the snapshot

When using very small datafiles (in the order of few MB), the easiest way to get the input data to Azure is to include
them in the set of (source) files that are uploaded to Azure. You can run the dataset creation script on your local
machine, writing the resulting two files to the same folder where your training script is located, and then submit the
training script to AzureML. Because the dataset files are in the same folder, they will automatically be uploaded to
AzureML.

However, it is not ideal to have the input files in the snapshot: The size of the snapshot is limited to 25 MB. It is better
to put the data files into blob storage and use input datasets.
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8.4.2 Creating the dataset in AzureML

The suggested way of creating a dataset is to run a script in AzureML that writes an output dataset. This is particularly
important for large datasets, to avoid the usually low bandwith from a local machine to the cloud.

This is shown in examples/6/inputs.py: This script prepares the CSV files in an AzureML run, and writes them to an
output dataset called himl_sample6_input. The relevant code parts are:

run_info = submit_to_azure_if_needed(
compute_cluster_name="lite-testing-ds2",
default_datastore="himldatasets",
output_datasets=["himl_sample6_input"])

# The dataset files should be written into this folder:
dataset = run_info.output_datasets[0] or Path("dataset")

Run the script:

cd examples/6
python inputs.py --azureml

You can now modify the training script examples/6/sample.py to use the newly created dataset himl_sample6_input
as an input. To do that, the following parameters are added to submit_to_azure_if_needed:

run_info = submit_to_azure_if_needed(
compute_cluster_name="lite-testing-ds2",
default_datastore="himldatasets",
input_datasets=["himl_sample6_input"])

When running in AzureML, the dataset will be downloaded before running the job. You can access the temporary
folder where the dataset is available like this:

input_folder = run_info.input_datasets[0] or Path("dataset")

The part behind the or statement is only necessary to keep a reasonable behaviour when running outside of AzureML:
When running in AzureML run_info.input_datasets[0] will be populated using input dataset specified in the
call to submit_to_azure_if_needed, and the input will be downloaded from blob storage. When running locally
run_info.input_datasets[0] will be None and a local folder should be populated and used.

The default_datastore is required if using the simplest configuration for an input dataset. There are alternatives
that do not require the default_datastore and allows a different datastore for each dataset, for example:

from health_azure import DatasetConfig, submit_to_azure_if_needed
...
run_info = submit_to_azure_if_needed(

...
input_datasets=[DatasetConfig(name="himl_sample7_input", datastore="himldatasets

→˓"],

For more details about datasets, see here
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8.4.3 Uploading the input files manually

An alternative to writing the dataset in AzureML (as suggested above) is to create them on the local machine, and
upload them manually directly to Azure blob storage.

This is shown in examples/7/inputs.py: This script prepares the CSV files and uploads them to blob storage, in a folder
called himl_sample7_input. Run the script:

cd examples/7
python inputs_via_upload.py

As in the above example, you can now modify the training script examples/7/sample.py to use an input dataset that
has the same name as the folder where the files just got uploaded. In this case, the following parameters are added to
submit_to_azure_if_needed:

run_info = submit_to_azure_if_needed(
...
default_datastore="himldatasets",
input_datasets=["himl_sample7_input"],

8.5 Hyperdrive

The sample examples/8/sample.py demonstrates adding hyperparameter tuning. This shows the same hyperparameter
search as in the AzureML sample.

Make the following additions:

from azureml.core import ScriptRunConfig
from azureml.train.hyperdrive import HyperDriveConfig, PrimaryMetricGoal, choice
from azureml.train.hyperdrive.sampling import RandomParameterSampling

...
def main() -> None:

param_sampling = RandomParameterSampling({
"--kernel": choice('linear', 'rbf', 'poly', 'sigmoid'),
"--penalty": choice(0.5, 1, 1.5)

})

hyperdrive_config = HyperDriveConfig(
run_config=ScriptRunConfig(source_directory=""),
hyperparameter_sampling=param_sampling,
primary_metric_name='Accuracy',
primary_metric_goal=PrimaryMetricGoal.MAXIMIZE,
max_total_runs=12,
max_concurrent_runs=4)

run_info = submit_to_azure_if_needed(
...
hyperdrive_config=hyperdrive_config)

Note that this does not make sense to run locally, it should always be run in AzureML. When invoked with:

cd examples/8
python sample.py --azureml
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this will perform a Hyperdrive run in AzureML, i.e. there will be 12 child runs, each randomly drawing from the
parameter sample space. AzureML can plot the metrics from the child runs, but to do that, some small modifications
are required.

Add in:

run = run_info.run
...
args = parser.parse_args()
run.log('Kernel type', np.str(args.kernel))
run.log('Penalty', np.float(args.penalty))
...
print('Accuracy of SVM classifier on test set: {:.2f}'.format(accuracy))
run.log('Accuracy', np.float(accuracy))

and these metrics will be displayed on the child runs tab in the Experiment page on AzureML.

8.6 Controlling when to submit to AzureML and when not

By default, the hi-ml package assumes that you supply a commandline argument --azureml (that can be anywhere on
the commandline) to trigger a submission of the present script to AzureML. If you wish to control it via a different flag,
coming out of your own argument parser, use the submit_to_azureml argument of the function health.azure.
himl.submit_to_azure_if_needed.
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NINE

LOGGING METRICS WHEN TRAINING MODELS IN AZUREML

This section describes the basics of logging to AzureML, and how this can be simplified when using PyTorch Lightning.
It also describes helper functions to make logging more consistent across your code.

9.1 Basics

The mechanics of writing metrics to an ML training run inside of AzureML are described here.

Using the hi-ml-azure toolbox, you can simplify that like this:

from health_azure import RUN_CONTEXT
...
RUN_CONTEXT.log(name="name_of_the_metric", value=my_tensor.item())

Similarly you can log strings (via the log_text method) or figures (via the log_image method), see the documenta-
tion.

9.2 Using PyTorch Lightning

The hi-ml toolbox relies on pytorch-lightning for a lot of its functionality. Logging of metrics is described in
detail here

hi-ml provides a Lightning-ready logger object to use with AzureML. You can add that to your trainer as you would
add a Tensorboard logger, and afterwards see all metrics in both your Tensorboard files and in the AzureML UI. This
logger can be added to the Trainer object as follows:

from health_ml.utils import AzureMLLogger
from pytorch_lightning.loggers import TensorBoardLogger
tb_logger = TensorBoardLogger("logs/")
azureml_logger = AzureMLLogger()
trainer = Trainer(logger=[tb_logger, azureml_logger])

You do not need to make any changes to your logging code to write to both loggers at the same time. This means that,
if your code correctly writes to Tensorboard in a local run, you can expect the metrics to come out correctly in the
AzureML UI as well after adding the AzureMLLogger.
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9.3 Making logging consistent when training with PyTorch Lightning

A common problem of training scripts is that the calls to the logging methods tend to run out of sync. The .logmethod
of a LightningModule has a lot of arguments, some of which need to be set correctly when running on multiple GPUs.

To simplify that, there is a function log_on_epoch that turns synchronization across nodes on/off depending on the
number of GPUs, and always forces the metrics to be logged upon epoch completion. Use as follows:

from health_ml.utils import log_on_epoch
from pytorch_lightning import LightningModule

class MyModule(LightningModule):
def training_step(self, *args, **kwargs):

...
loss = my_loss(y_pred, y)
log_on_epoch(self, loss)
return loss

9.3.1 Logging learning rates

Logging learning rates is important for monitoring training, but again this can add overhead. To log learning rates
easily and consistently, we suggest either of two options:

• Add a LearningRateMonitor callback to your trainer, as described here

• Use the hi-ml function log_learning_rate

The log_learning_rate function can be used at any point the training code, like this:

from health_ml.utils import log_learning_rate
from pytorch_lightning import LightningModule

class MyModule(LightningModule):
def training_step(self, *args, **kwargs):

...
log_learning_rate(self, "learning_rate")
loss = my_loss(y_pred, y)
return loss

log_learning_rate will log values from all learning rate schedulers, and all learning rates if a scheduler returns
multiple values. In this example, the logged metric will be learning_rate if there is a single scheduler that outputs
a single LR, or learning_rate/1/0 to indicate the value coming from scheduler index 1, value index 0.
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CHAPTER

TEN

NOTES FOR DEVELOPERS

10.1 Creating a Conda environment

To create a separate Conda environment with all packages that hi-ml requires for running and testing, use the provided
environment.yml file. Create a Conda environment called himl from that via

conda env create --file environment.yml
conda activate himl

10.2 Using specific versions hi-ml in your Python environments

If you’d like to test specific changes to the hi-ml package in your code, you can use two different routes:

• You can clone the hi-ml repository on your machine, and use hi-ml in your Python environment via a local
package install:

pip install -e <your_git_folder>/hi-ml

• You can consume an early version of the package from test.pypi.org via pip:

pip install --extra-index-url https://test.pypi.org/simple/ hi-ml==0.1.0.post165

• If you are using Conda, you can add an additional parameter for pip into the Conda environment.yml file like
this:

name: foo
dependencies:
- pip=20.1.1
- python=3.7.3
- pip:

- --extra-index-url https://test.pypi.org/simple/
- hi-ml==0.1.0.post165
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10.3 Common things to do

The repository contains a makefile with definitions for common operations.

• make check: Run flake8 and mypy on the repository.

• make test: Run flake8 and mypy on the repository, then all tests via pytest

• make pip: Install all packages for running and testing in the current interpreter.

• make conda: Update the hi-ml Conda environment and activate it

10.4 Building documentation

To build the sphinx documentation, you must have sphinx and related packages installed (see build_requirements.
txt in the repository root). Then run:

cd docs
make html

This will build all your documentation in docs/build/html.

10.5 Setting up your AzureML workspace

• In the browser, navigate to the AzureML workspace that you want to use for running your tests.

• In the top right section, there will be a dropdown menu showing the name of your AzureML workspace. Expand
that.

• In the panel, there is a link “Download config file”. Click that.

• This will download a file config.json. Move that file to the root folder of your hi-ml repository. The file
name is already present in .gitignore, and will hence not be checked in.

10.6 Creating and Deleting Docker Environments in AzureML

• Passing a docker_base_image into submit_to_azure_if_needed causes a new image to be built and reg-
istered in your workspace (see docs for more information).

• To remove an environment use the az ml environment delete function in the AzureML CLI (note that all the
parameters need to be set, none are optional).
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10.7 Testing

For all of the tests to work locally you will need to cache your AzureML credentials. One simple way to do this is to run
the example in src/health/azure/examples (i.e. run python elevate_this.py --message='Hello World'
--azureml or make example) after editing elevate_this.py to reference your compute cluster.

When running the tests locally, they can either be run against the source directly, or the source built into a package.

• To run the tests against the source directly in the local src folder, ensure that there is no wheel in the dist folder
(for example by running make clean). If a wheel is not detected, then the local src folder will be copied into
the temporary test folder as part of the test process.

• To run the tests against the source as a package, build it with make build. This will build the local src folder
into a new wheel in the dist folder. This wheel will be detected and passed to AzureML as a private package
as part of the test process.

10.8 Creating a New Release

To create a new package release, follow these steps:

• Modify CHANGELOG.md as follows:

– Copy the whole section called “Upcoming”, including its subsections for “Added/Removed/. . . ” to a new
section, that has the desired package version and the current date as the title. For example, to release package
version 0.12.17 on Oct 10th, that section would be called “0.12.17 (2021-10-21)”.

– In the section for the new release, remove any empty subsections if needed.

– Clean up all PR links from the “Upcoming” section, to effectively create an empty template for the next
release.

• Create a PR for this change. While creating the PR, add the “no changelog needed” label that exists on the repo.
Important: This label needs to be added right when the PR is created, not afterwards - the github workflows will
not pick it up if added afterwards. In the worst case, you can added the label afterwards, and push a whitespace
change to the PR.

• Once the PR with the updated CHANGELOG.md is in, create a tag that has the desired version number, plus a “v”
prefix. For example, to create package version 0.12.17, create a tag v0.12.17
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CHAPTER

ELEVEN

CONTRIBUTING TO THIS TOOLBOX

We welcome all contributions that help us achieve our aim of speeding up ML/AI research in health and life sciences.
Examples of contributions are

• Data loaders for specific health & life sciences data

• Network architectures and components for deep learning models

• Tools to analyze and/or visualize data

All contributions to the toolbox need to come with unit tests, and will be reviewed when a Pull Request (PR) is started.
If in doubt, reach out to the core hi-ml team before starting your work.

Please look through the existing folder structure to find a good home for your contribution.

11.1 Submitting a Pull Request

If you’d like to submit a PR to the codebase, please ensure you:

• Include a brief description

• Link to an issue, if relevant

• Write unit tests for the code - see below for details.

• Add appropriate documentation for any new code that you introduce

11.2 Code style

• We use flake8 as a linter, and mypy for static typechecking. Both tools run as part of the PR build, and must
run without errors for a contribution to be accepted. mypy requires that all functions and methods carry type
annotations, see mypy documentation.

• We highly recommend to run both tools before pushing the latest changes to a PR. If you have make installed,
you can run both tools in one go via make check (from the repository root folder)

• Code should use sphinx-style comments like this:

from typing import List, Optional
def foo(bar: int) -> Optional[List]:

"""
Creates a list. Or not. Note that there must a be blank line after the summary.

:param bar: The length of the list. If 0, returns None. If there is a very long doc␣
→˓string for an argument, the next (continues on next page)
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(continued from previous page)

line must be indented.
:return: A list with `bar` elements.
"""

Note the blank line after the summary, and the indentation of multi-line documentation for parameters.

11.3 Unit testing

• DO write unit tests for each new function or class that you add.

• DO extend unit tests for existing functions or classes if you change their core behaviour.

• DO try your best to write unit tests that are fast. Very often, this can be done by reducing data size to a minimum.
Also, it is helpful to avoid long-running integration tests, but try to test at the level of the smallest involved
function.

• DO ensure that your tests are designed in a way that they can pass on the local machine, even if they are relying
on specific cloud features. If required, use unittest.mock to simulate the cloud features, and hence enable the
tests to run successfully on your local machine.

• DO run all unit tests on your dev machine before submitting your changes. The test suite is designed to pass
completely also outside of cloud builds.

• DO NOT rely only on the test builds in the cloud (i.e., run test locally before submitting). Cloud builds trigger
AzureML runs on GPU machines that have a far higher CO2 footprint than your dev machine.
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CHAPTER

TWELVE

HEALTH_AZURE PACKAGE

12.1 Functions

create_run_configuration(workspace, . . . [, . . . ]) Creates an AzureML run configuration, that contains in-
formation about environment, multi node execution, and
Docker.

create_script_run([snapshot_root_directory, . . . ]) Creates an AzureML ScriptRunConfig object, that holds
the information about the snapshot, the entry script, and
its arguments.

download_files_from_run_id(run_id, out-
put_folder)

For a given Azure ML run id, first retrieve the Run, and
then download all files, which optionally start with a
given prefix.

download_checkpoints_from_run_id(run_id, . . . ) Given an Azure ML run id, download all files from a
given checkpoint directory within that run, to the path
specified by output_path.

download_from_datastore(datastore_name, . . . ) Download file(s) from an Azure ML Datastore that are
registered within a given Workspace.

fetch_run(workspace, run_recovery_id) Finds an existing run in an experiment, based on a re-
covery ID that contains the experiment ID and the actual
RunId.

get_most_recent_run(run_recovery_file,
workspace)

Gets the name of the most recently executed AzureML
run, instantiates that Run object and returns it.

get_workspace(aml_workspace, . . . ) Retrieve an Azure ML Workspace from one of several
places:

is_running_in_azure_ml([aml_run]) Returns True if the given run is inside of an AzureML
machine, or False if it is on a machine outside AzureML.

set_environment_variables_for_multi_node() Sets the environment variables that PyTorch Lightning
needs for multi-node training.

split_recovery_id(id) Splits a run ID into the experiment name and the actual
run.

submit_run(workspace, experiment_name, . . . ) Starts an AzureML run on a given workspace, via the
script_run_config.

submit_to_azure_if_needed([. . . ]) Submit a folder to Azure, if needed and run it.
torch_barrier() This is a barrier to use in distributed jobs.
upload_to_datastore(datastore_name, . . . [, . . . ]) Upload a folder to an Azure ML Datastore that is regis-

tered within a given Workspace.
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12.1.1 create_run_configuration

health_azure.create_run_configuration(workspace, compute_cluster_name,
conda_environment_file=None, aml_environment_name='',
environment_variables=None, pip_extra_index_url='',
private_pip_wheel_path=None, docker_base_image='',
docker_shm_size='', num_nodes=1, max_run_duration='',
input_datasets=None, output_datasets=None)

Creates an AzureML run configuration, that contains information about environment, multi node execution, and
Docker.

Parameters

• workspace (Workspace) – The AzureML Workspace to use.

• aml_environment_name (str) – The name of an AzureML environment that should
be used to submit the script. If not provided, an environment will be created from
the arguments to this function (conda_environment_file, pip_extra_index_url, environ-
ment_variables, docker_base_image)

• max_run_duration (str) – The maximum runtime that is allowed for this job in AzureML.
This is given as a floating point number with a string suffix s, m, h, d for seconds, minutes,
hours, day. Examples: ‘3.5h’, ‘2d’

• compute_cluster_name (str) – The name of the AzureML cluster that should run the job.
This can be a cluster with CPU or GPU machines.

• conda_environment_file (Optional[Path]) – The conda configuration file that de-
scribes which packages are necessary for your script to run.

• environment_variables (Optional[Dict[str, str]]) – The environment variables that
should be set when running in AzureML.

• docker_base_image (str) – The Docker base image that should be used when creating a
new Docker image.

• docker_shm_size (str) – The Docker shared memory size that should be used when cre-
ating a new Docker image.

• pip_extra_index_url (str) – If provided, use this PIP package index to find additional
packages when building the Docker image.

• private_pip_wheel_path (Optional[Path]) – If provided, add this wheel as a private
package to the AzureML workspace.

• conda_environment_file – The file that contains the Conda environment definition.

• input_datasets (Optional[List[DatasetConfig]]) – The script will consume all data
in folder in blob storage as the input. The folder must exist in blob storage, in the location
that you gave when creating the datastore. Once the script has run, it will also register the
data in this folder as an AzureML dataset.

• output_datasets (Optional[List[DatasetConfig]]) – The script will create a tempo-
rary folder when running in AzureML, and while the job writes data to that folder, upload it
to blob storage, in the data store.

• num_nodes (int) – The number of nodes to use in distributed training on AzureML.

Return type RunConfiguration

Returns
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12.1.2 create_script_run

health_azure.create_script_run(snapshot_root_directory=None, entry_script=None, script_params=None)
Creates an AzureML ScriptRunConfig object, that holds the information about the snapshot, the entry script, and
its arguments.

Parameters

• entry_script (Union[Path, str, None]) – The script that should be run in AzureML.

• snapshot_root_directory (Optional[Path]) – The directory that contains all code that
should be packaged and sent to AzureML. All Python code that the script uses must be copied
over.

• script_params (Optional[List[str]]) – A list of parameter to pass on to the script as it
runs in AzureML. If empty (or None, the default) these will be copied over from sys.argv,
omitting the –azureml flag.

Return type ScriptRunConfig

Returns

12.1.3 download_files_from_run_id

health_azure.download_files_from_run_id(run_id, output_folder, prefix='', workspace=None,
workspace_config_path=None, validate_checksum=False)

For a given Azure ML run id, first retrieve the Run, and then download all files, which optionally start with a
given prefix. E.g. if the Run creates a folder called “outputs”, which you wish to download all files from, specify
prefix=”outputs”. To download all files associated with the run, leave prefix empty.

If not running inside AML and neither a workspace nor the config file are provided, the code will try to locate
a config.json file in any of the parent folders of the current working directory. If that succeeds, that config.json
file will be used to instantiate the workspace.

If function is called in a distributed PyTorch training script, the files will only be downloaded once per node (i.e,
all process where is_local_rank_zero() == True). All processes will exit this function once all downloads are
completed.

Parameters

• run_id (str) – The id of the Azure ML Run

• output_folder (Path) – Local directory to which the Run files should be downloaded.

• prefix (str) – Optional prefix to filter Run files by

• workspace (Optional[Workspace]) – Optional Azure ML Workspace object

• workspace_config_path (Optional[Path]) – Optional path to settings for Azure ML
Workspace

• validate_checksum (bool) – Whether to validate the content from HTTP response

Return type None
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12.1.4 download_checkpoints_from_run_id

health_azure.download_checkpoints_from_run_id(run_id, checkpoint_dir, output_folder,
aml_workspace=None, workspace_config_path=None)

Given an Azure ML run id, download all files from a given checkpoint directory within that run, to the path spec-
ified by output_path. If running in AML, will take the current workspace. Otherwise, if neither aml_workspace
nor workspace_config_path are provided, will try to locate a config.json file in any of the parent folders of the
current working directory.

Parameters

• run_id (str) – The id of the run to download checkpoints from

• checkpoint_dir (str) – The path to the checkpoints directory within the run files

• output_folder (Path) – The path to which the checkpoints should be stored

• aml_workspace (Optional[Workspace]) – Optional AML workspace object

• workspace_config_path (Optional[Path]) – Optional workspace config file

Return type None

12.1.5 download_from_datastore

health_azure.download_from_datastore(datastore_name, file_prefix, output_folder, aml_workspace=None,
workspace_config_path=None, overwrite=False,
show_progress=False)

Download file(s) from an Azure ML Datastore that are registered within a given Workspace. The path to the
file(s) to be downloaded, relative to the datastore <datastore_name>, is specified by the parameter “prefix”.
Azure will search for files within the Datastore whose paths begin with this string. If you wish to download
multiple files from the same folder, set <prefix> equal to that folder’s path within the Datastore. If you wish to
download a single file, include both the path to the folder it resides in, as well as the filename itself. If the relevant
file(s) are found, they will be downloaded to the folder specified by <output_folder>. If this directory does not
already exist, it will be created. E.g. if your datastore contains the paths [“foo/bar/1.txt”, “foo/bar/2.txt”] and
you call this function with file_prefix=”foo/bar” and output_folder=”outputs”, you would end up with the files
[“outputs/foo/bar/1.txt”, “outputs/foo/bar/2.txt”]

If not running inside AML and neither a workspace nor the config file are provided, the code will try to locate
a config.json file in any of the parent folders of the current working directory. If that succeeds, that config.json
file will be used to instantiate the workspace.

Parameters

• datastore_name (str) – The name of the Datastore containing the blob to be downloaded.
This Datastore itself must be an instance of an AzureBlobDatastore.

• file_prefix (str) – The prefix to the blob to be downloaded

• output_folder (Path) – The directory into which the blob should be downloaded

• aml_workspace (Optional[Workspace]) – Optional Azure ML Workspace object

• workspace_config_path (Optional[Path]) – Optional path to settings for Azure ML
Workspace

• overwrite (bool) – If True, will overwrite any existing file at the same remote path. If
False, will skip any duplicate file.

• show_progress (bool) – If True, will show the progress of the file download
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Return type None

12.1.6 fetch_run

health_azure.fetch_run(workspace, run_recovery_id)
Finds an existing run in an experiment, based on a recovery ID that contains the experiment ID and the actual
RunId. The run can be specified either in the experiment_name:run_id format, or just the run_id.

Parameters

• workspace (Workspace) – the configured AzureML workspace to search for the experi-
ment.

• run_recovery_id (str) – The Run to find. Either in the full recovery ID format, experi-
ment_name:run_id or just the run_id

Return type Run

Returns The AzureML run.

12.1.7 get_most_recent_run

health_azure.get_most_recent_run(run_recovery_file, workspace)
Gets the name of the most recently executed AzureML run, instantiates that Run object and returns it.
:type run_recovery_file: Path :param run_recovery_file: The path of the run recovery file :type workspace:
Workspace :param workspace: Azure ML Workspace :rtype: Run :return: The Run

12.1.8 get_workspace

health_azure.get_workspace(aml_workspace, workspace_config_path)

Retrieve an Azure ML Workspace from one of several places:

1. If the function has been called during an AML run (i.e. on an Azure agent), returns the associated
workspace

2. If a Workspace object has been provided by the user, return that

3. If a path to a Workspace config file has been provided, load the workspace according to that.

If not running inside AML and neither a workspace nor the config file are provided, the code will try to locate
a config.json file in any of the parent folders of the current working directory. If that succeeds, that config.json
file will be used to instantiate the workspace.

Parameters

• aml_workspace (Optional[Workspace]) – If provided this is returned as the AzureML
Workspace.

• workspace_config_path (Optional[Path]) – If not provided with an AzureML
Workspace, then load one given the information in this config

Return type Workspace

Returns An AzureML workspace.

12.1. Functions 41



hi-ml

12.1.9 is_running_in_azure_ml

health_azure.is_running_in_azure_ml(aml_run=<azureml.core.run._OfflineRun object>)
Returns True if the given run is inside of an AzureML machine, or False if it is on a machine outside AzureML.
When called without arguments, this functions returns True if the present code is running in AzureML. Note
that in runs with “compute_target=’local’” this function will also return True. Such runs execute outside of
AzureML, but are able to log all their metrics, etc to an AzureML run.

Parameters aml_run (Run) – The run to check. If omitted, use the default run in RUN_CONTEXT

Return type bool

Returns True if the given run is inside of an AzureML machine, or False if it is a machine outside
AzureML.

12.1.10 set_environment_variables_for_multi_node

health_azure.set_environment_variables_for_multi_node()
Sets the environment variables that PyTorch Lightning needs for multi-node training.

Return type None

12.1.11 split_recovery_id

health_azure.split_recovery_id(id)
Splits a run ID into the experiment name and the actual run. The argument can be in the format ‘experi-
ment_name:run_id’, or just a run ID like user_branch_abcde12_123. In the latter case, everything before the
last two alphanumeric parts is assumed to be the experiment name.

Parameters id (str) – The string run ID.

Return type Tuple[str, str]

Returns experiment name and run name

12.1.12 submit_run

health_azure.submit_run(workspace, experiment_name, script_run_config, tags=None,
wait_for_completion=False, wait_for_completion_show_output=False)

Starts an AzureML run on a given workspace, via the script_run_config.

Parameters

• workspace (Workspace) – The AzureML workspace to use.

• experiment_name (str) – The name of the experiment that will be used or created. If the
experiment name contains characters that are not valid in Azure, those will be removed.

• script_run_config (Union[ScriptRunConfig, HyperDriveConfig]) – The settings
that describe which script should be run.

• tags (Optional[Dict[str, str]]) – A dictionary of string key/value pairs, that will be
added as metadata to the run. If set to None, a default metadata field will be added that only
contains the commandline arguments that started the run.

• wait_for_completion (bool) – If False (the default) return after the run is submitted to
AzureML, otherwise wait for the completion of this run (if True).
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• wait_for_completion_show_output (bool) – If wait_for_completion is True this pa-
rameter indicates whether to show the run output on sys.stdout.

Return type Run

Returns An AzureML Run object.

12.1.13 submit_to_azure_if_needed

health_azure.submit_to_azure_if_needed(compute_cluster_name='', entry_script=None,
aml_workspace=None, workspace_config_file=None,
snapshot_root_directory=None, script_params=None,
conda_environment_file=None, aml_environment_name='',
experiment_name=None, environment_variables=None,
pip_extra_index_url='', private_pip_wheel_path=None,
docker_base_image='', docker_shm_size='',
ignored_folders=None, default_datastore='',
input_datasets=None, output_datasets=None, num_nodes=1,
wait_for_completion=False,
wait_for_completion_show_output=False, max_run_duration='',
submit_to_azureml=None, tags=None, after_submission=None,
hyperdrive_config=None)

Submit a folder to Azure, if needed and run it. Use the commandline flag –azureml to submit to AzureML, and
leave it out to run locally.

Parameters

• after_submission (Optional[Callable[[Run], None]]) – A function that will be called
directly after submitting the job to AzureML. The only argument to this function is the run
that was just submitted. Use this to, for example, add additional tags or print information
about the run.

• tags (Optional[Dict[str, str]]) – A dictionary of string key/value pairs, that will be
added as metadata to the run. If set to None, a default metadata field will be added that only
contains the commandline arguments that started the run.

• aml_environment_name (str) – The name of an AzureML environment that should be
used to submit the script. If not provided, an environment will be created from the arguments
to this function.

• max_run_duration (str) – The maximum runtime that is allowed for this job in AzureML.
This is given as a floating point number with a string suffix s, m, h, d for seconds, minutes,
hours, day. Examples: ‘3.5h’, ‘2d’

• experiment_name (Optional[str]) – The name of the AzureML experiment in which the
run should be submitted. If omitted, this is created based on the name of the current script.

• entry_script (Union[Path, str, None]) – The script that should be run in AzureML

• compute_cluster_name (str) – The name of the AzureML cluster that should run the job.
This can be a cluster with CPU or GPU machines.

• conda_environment_file (Union[Path, str, None]) – The conda configuration file that
describes which packages are necessary for your script to run.

• aml_workspace (Optional[Workspace]) – There are two optional parameters used to
glean an existing AzureML Workspace. The simplest is to pass it in as a parameter.
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• workspace_config_file (Union[Path, str, None]) – The 2nd option is to specify the
path to the config.json file downloaded from the Azure portal from which we can retrieve the
existing Workspace.

• snapshot_root_directory (Union[Path, str, None]) – The directory that contains all
code that should be packaged and sent to AzureML. All Python code that the script uses must
be copied over.

• ignored_folders (Optional[List[Union[Path, str]]]) – A list of folders to exclude
from the snapshot when copying it to AzureML.

• script_params (Optional[List[str]]) – A list of parameter to pass on to the script as it
runs in AzureML. If empty (or None, the default) these will be copied over from sys.argv,
omitting the –azureml flag.

• environment_variables (Optional[Dict[str, str]]) – The environment variables that
should be set when running in AzureML.

• docker_base_image (str) – The Docker base image that should be used when creating a
new Docker image.

• docker_shm_size (str) – The Docker shared memory size that should be used when cre-
ating a new Docker image.

• pip_extra_index_url (str) – If provided, use this PIP package index to find additional
packages when building the Docker image.

• private_pip_wheel_path (Union[Path, str, None]) – If provided, add this wheel as a
private package to the AzureML workspace.

• default_datastore (str) – The data store in your AzureML workspace, that points to
your training data in blob storage. This is described in more detail in the README.

• input_datasets (Optional[List[Union[str, DatasetConfig]]]) – The script will con-
sume all data in folder in blob storage as the input. The folder must exist in blob storage, in
the location that you gave when creating the datastore. Once the script has run, it will also
register the data in this folder as an AzureML dataset.

• output_datasets (Optional[List[Union[str, DatasetConfig]]]) – The script will
create a temporary folder when running in AzureML, and while the job writes data to that
folder, upload it to blob storage, in the data store.

• num_nodes (int) – The number of nodes to use in distributed training on AzureML.

• wait_for_completion (bool) – If False (the default) return after the run is submitted to
AzureML, otherwise wait for the completion of this run (if True).

• wait_for_completion_show_output (bool) – If wait_for_completion is True this pa-
rameter indicates whether to show the run output on sys.stdout.

• submit_to_azureml (Optional[bool]) – If True, the codepath to create an AzureML run
will be executed. If False, the codepath for local execution (i.e., return immediately) will be
executed. If not provided (None), submission to AzureML will be triggered if the comman-
dline flag ‘–azureml’ is present in sys.argv

• hyperdrive_config (Optional[HyperDriveConfig]) – A configuration object for Hy-
perdrive (hyperparameter search).

Return type AzureRunInfo

Returns If the script is submitted to AzureML then we terminate python as the script should be
executed in AzureML, otherwise we return a AzureRunInfo object.
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12.1.14 torch_barrier

health_azure.torch_barrier()
This is a barrier to use in distributed jobs. Use it to make all processes that participate in a distributed pytorch
job to wait for each other. When torch.distributed is not set up or not found, the function exits immediately.

Return type None

12.1.15 upload_to_datastore

health_azure.upload_to_datastore(datastore_name, local_data_folder, remote_path, aml_workspace=None,
workspace_config_path=None, overwrite=False, show_progress=False)

Upload a folder to an Azure ML Datastore that is registered within a given Workspace. Note that this will upload
all files within the folder, but will not copy the folder itself. E.g. if you specify the local_data_dir=”foo/bar” and
that contains the files [“1.txt”, “2.txt”], and you specify the remote_path=”baz”, you would see the following
paths uploaded to your Datastore: [“baz/1.txt”, “baz/2.txt”]

If not running inside AML and neither a workspace nor the config file are provided, the code will try to locate
a config.json file in any of the parent folders of the current working directory. If that succeeds, that config.json
file will be used to instantiate the workspace.

Parameters

• datastore_name (str) – The name of the Datastore to which the blob should be uploaded.
This Datastore itself must be an instance of an AzureBlobDatastore

• local_data_folder (Path) – The path to the local directory containing the data to be
uploaded

• remote_path (Path) – The path to which the blob should be uploaded

• aml_workspace (Optional[Workspace]) – Optional Azure ML Workspace object

• workspace_config_path (Optional[Path]) – Optional path to settings for Azure ML
Workspace

• overwrite (bool) – If True, will overwrite any existing file at the same remote path. If
False, will skip any duplicate files and continue to the next.

• show_progress (bool) – If True, will show the progress of the file download

Return type None

12.2 Classes

AzureRunInfo(input_datasets, . . . ) This class stores all information that a script needs to run
inside and outside of AzureML.

DatasetConfig(name[, datastore, version, . . . ]) Contains information to use AzureML datasets as inputs
or outputs.
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12.2.1 AzureRunInfo

class health_azure.AzureRunInfo(input_datasets, output_datasets, run, is_running_in_azure_ml,
output_folder, logs_folder)

Bases: object

This class stores all information that a script needs to run inside and outside of AzureML. It is return from
submit_to_azure_if_needed, where the return value depends on whether the script is inside or outside AzureML.

Please check the source code for detailed documentation for all fields.

12.2.2 DatasetConfig

class health_azure.DatasetConfig(name, datastore='', version=None, use_mounting=None, target_folder='',
local_folder=None)

Bases: object

Contains information to use AzureML datasets as inputs or outputs.

Parameters

• name (str) – The name of the dataset, as it was registered in the AzureML workspace. For
output datasets, this will be the name given to the newly created dataset.

• datastore (str) – The name of the AzureML datastore that holds the dataset. This can
be empty if the AzureML workspace has only a single datastore, or if the default datastore
should be used.

• version (Optional[int]) – The version of the dataset that should be used. This is only
used for input datasets. If the version is not specified, the latest version will be used.

• use_mounting (Optional[bool]) – If True, the dataset will be “mounted”, that is, indi-
vidual files will be read or written on-demand over the network. If False, the dataset will
be fully downloaded before the job starts, respectively fully uploaded at job end for output
datasets. Defaults: False (downloading) for datasets that are script inputs, True (mounting)
for datasets that are script outputs.

• target_folder (str) – The folder into which the dataset should be downloaded or
mounted. If left empty, a random folder on /tmp will be chosen.

• local_folder (Optional[Path]) – The folder on the local machine at which the dataset
is available. This is used only for runs outside of AzureML.

Methods Summary

to_input_dataset(workspace, dataset_index) Creates a configuration for using an AzureML dataset
inside of an AzureML run.

to_output_dataset(workspace, dataset_index) Creates a configuration to write a script output to an
AzureML dataset.
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Methods Documentation

to_input_dataset(workspace, dataset_index)
Creates a configuration for using an AzureML dataset inside of an AzureML run. This will make the
AzureML dataset with given name available as a named input, using INPUT_0 as the key for dataset index
0.

Parameters

• workspace (Workspace) – The AzureML workspace to read from.

• dataset_index (int) – Suffix for using datasets as named inputs, the dataset will be
marked INPUT_{index}

Return type DatasetConsumptionConfig

to_output_dataset(workspace, dataset_index)
Creates a configuration to write a script output to an AzureML dataset. The name and datastore of this new
dataset will be taken from the present object.

Parameters

• workspace (Workspace) – The AzureML workspace to read from.

• dataset_index (int) – Suffix for using datasets as named inputs, the dataset will be
marked OUTPUT_{index}

Return type OutputFileDatasetConfig

Returns
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CHAPTER

THIRTEEN

HEALTH_ML.UTILS PACKAGE

13.1 Functions

log_learning_rate(module[, name]) Logs the learning rate(s) used by the given module.
log_on_epoch (module[, name, value, metrics, . . . ]) Write a dictionary with metrics and/or an individual

metric as a name/value pair to the loggers of the given
module.

13.1.1 log_learning_rate

health_ml.utils.log_learning_rate(module, name='learning_rate')
Logs the learning rate(s) used by the given module. Multiple learning rate schedulers and/or multiple rates
per scheduler are supported. The learning rates are logged under the given name. If multiple scheduler and/or
multiple rates are used, a suffix like “/0/1” is added, to indicate the learning rate for scheduler 0, index 1, for
example. Learning rates are logged on epoch.

Parameters

• module (LightningModule) – The module for which the learning rates should be logged.

• name (str) – The name to use when logging the learning rates.

Return type None

13.1.2 log_on_epoch

health_ml.utils.log_on_epoch(module, name=None, value=None, metrics=None, reduce_fx=<built-in
method mean of type object>, sync_dist=None, sync_dist_op='mean')

Write a dictionary with metrics and/or an individual metric as a name/value pair to the loggers of the given
module. Metrics are always logged upon epoch completion. The metrics in question first synchronized across
GPUs if DDP with >1 node is used, using the sync_dist_op (default: mean). Afterwards, they are aggregated
across all steps via the reduce_fx (default: mean). Metrics that are fed in as plain numbers rather than tensors
(for example, plain Python integers) are converted to tensors before logging, to enable synchronization across
GPUs if needed.

Parameters

• name (Optional[str]) – The name of the metric to log.

• value (Optional[Any]) – The actual value of the metric to log.

• metrics (Optional[Mapping[str, Any]]) – A dictionary with metrics to log.
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• module (LightningModule) – The PyTorch Lightning module where the metrics should
be logged.

• sync_dist (Optional[bool]) – If not None, use this value for the sync_dist argument to
module.log. If None,

set it automatically depending on the use of DDP. Set this to False if you want to log metrics that are only available
on Rank 0 of a DDP job. :type reduce_fx: Callable :param reduce_fx: The reduce function to apply to the per-
step values, after synchronizing the tensors across GPUs. Default: torch.mean :type sync_dist_op: Any :param
sync_dist_op: The reduce operation to use when synchronizing the tensors across GPUs. This must be a value
recognized by sync_ddp: ‘sum’, ‘mean’, ‘avg’

Return type None

13.2 Classes

AzureMLLogger() A Pytorch Lightning logger that stores metrics in the cur-
rent AzureML run.

13.2.1 AzureMLLogger

class health_ml.utils.AzureMLLogger
Bases: pytorch_lightning.loggers.base.LightningLoggerBase

A Pytorch Lightning logger that stores metrics in the current AzureML run. If the present run is not inside
AzureML, nothing gets logged.

Methods Summary

experiment() Return the experiment object associated with this
logger.

log_hyperparams(params) Record hyperparameters.
log_metrics(metrics[, step]) Records metrics.
name() Return the experiment name.
version() Return the experiment version.

Methods Documentation

experiment()
Return the experiment object associated with this logger.

Return type Any

log_hyperparams(params)
Record hyperparameters.

Parameters

• params (Any) – Namespace containing the hyperparameters

• args – Optional positional arguments, depends on the specific logger being used
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• kwargs – Optional keywoard arguments, depends on the specific logger being used

Return type None

log_metrics(metrics, step=None)
Records metrics. This method logs metrics as as soon as it received them. If you want to aggregate metrics
for one specific step, use the agg_and_log_metrics() method.

Parameters

• metrics (Dict[str, float]) – Dictionary with metric names as keys and measured quan-
tities as values

• step (Optional[int]) – Step number at which the metrics should be recorded

Return type None

name()
Return the experiment name.

Return type Any

version()
Return the experiment version.

Return type int
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• genindex

• modindex

• search
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