
hi-ml

InnerEye

Nov 16, 2021

WORKING WITH AZURE

1 First steps: How to run your Python code in the cloud 3

2 Connecting to Azure 7

3 Datasets 9

4 Hyperparameter Search via Hyperdrive 13

5 Using Cheap Low Priority VMs 15

6 Commandline tools 19

7 Downloading from/ uploading to Azure ML 23

8 Examples 25

9 Logging metrics when training models in AzureML 33

10 Performance Diagnostics 35

11 Notes for developers 37

12 Contributing to this toolbox 41

13 Loading Images 45

14 Results 51

15 Whole Slide Images 53

16 health_azure Package 57

17 health_ml.utils Package 71

18 Indices and tables 81

Python Module Index 83

Index 85

i

ii

hi-ml

This toolbox helps to simplify and streamline work on deep learning models for healthcare and life sciences, by pro-
viding tested components (data loaders, pre-processing), deep learning models, and cloud integration tools.

The hi-ml toolbox provides

• Functionality to easily run Python code in Azure Machine Learning services

• Low-level and high-level building blocks for Machine Learning / AI researchers and practitioners.

WORKING WITH AZURE 1

hi-ml

2 WORKING WITH AZURE

CHAPTER

ONE

FIRST STEPS: HOW TO RUN YOUR PYTHON CODE IN THE CLOUD

The simplest use case for the hi-ml toolbox is taking a script that you developed, and run it inside of Azure Machine
Learning (AML) services. This can be helpful because the cloud gives you access to massive GPU resource, you can
consume vast datasets, and access multiple machines at the same time for distributed training.

1.1 Setting up AzureML

You need to have an AzureML workspace in your Azure subscription. Download the config file from your AzureML
workspace, as described here. Put this file (it should be called config.json) into the folder where your script lives,
or one of its parent folders. You can use parent folders up to the last parent that is still included in the PYTHONPATH
environment variable: hi-ml will try to be smart and search through all folders that it thinks belong to your current
project.

1.2 Using the AzureML integration layer

Consider a simple use case, where you have a Python script that does something - this could be training a model, or
pre-processing some data. The hi-ml package can help easily run that on Azure Machine Learning (AML) services.

Here is an example script that reads images from a folder, resizes and saves them to an output folder:

from pathlib import Path
if __name__ == '__main__':

input_folder = Path("/tmp/my_dataset")
output_folder = Path("/tmp/my_output")
for file in input_folder.glob("*.jpg"):

contents = read_image(file)
resized = contents.resize(0.5)
write_image(output_folder / file.name)

Doing that at scale can take a long time. We’d like to run that script in AzureML, consume the data from a folder
in blob storage, and write the results back to blob storage, so that we can later use it as an input for model training.

You can achieve that by adding a call to submit_to_azure_if_needed from the hi-ml package:

from pathlib import Path
from health_azure import submit_to_azure_if_needed
if __name__ == '__main__':

current_file = Path(__file__)
run_info = submit_to_azure_if_needed(compute_cluster_name="preprocess-ds12",

(continues on next page)

3

https://docs.microsoft.com/en-us/azure/machine-learning/how-to-configure-environment

hi-ml

(continued from previous page)

input_datasets=["images123"],
Omit this line if you don't create an output␣

→˓dataset (for example, in
model training scripts)
output_datasets=["images123_resized"],
default_datastore="my_datastore")

When running in AzureML, run_info.input_datasets and run_info.output_datasets will␣
→˓be populated,
and point to the data coming from blob storage. For runs outside AML, the paths␣

→˓will be None.
Replace the None with a meaningful path, so that we can still run the script␣

→˓easily outside AML.
input_dataset = run_info.input_datasets[0] or Path("/tmp/my_dataset")
output_dataset = run_info.output_datasets[0] or Path("/tmp/my_output")
files_processed = []
for file in input_dataset.glob("*.jpg"):

contents = read_image(file)
resized = contents.resize(0.5)
write_image(output_dataset / file.name)
files_processed.append(file.name)

Any other files that you would not consider an "output dataset", like metrics, etc,
→˓ should be written to
a folder "./outputs". Any files written into that folder will later be visible in␣

→˓the AzureML UI.
run_info.output_folder already points to the correct folder.
stats_file = run_info.output_folder / "processed_files.txt"
stats_file.write_text("\n".join(files_processed))

Once these changes are in place, you can submit the script to AzureML by supplying an additional --azureml flag on
the commandline, like python myscript.py --azureml.

Note that you do not need to modify the argument parser of your script to recognize the --azureml flag.

1.3 Essential arguments to submit_to_azure_if_needed

When calling submit_to_azure_if_needed, you can to supply the following parameters:

• compute_cluster_name (Mandatory): The name of the AzureML cluster that should run the job. This can
be a cluster with CPU or GPU machines. See here for documentation

• entry_script: The script that should be run. If omitted, the hi-ml package will assume that you would like
to submit the script that is presently running, given in sys.argv[0].

• snapshot_root_directory: The directory that contains all code that should be packaged and sent to
AzureML. All Python code that the script uses must be copied over. This defaults to the current work-
ing directory, but can be one of its parents. If you would like to explicitly skip some folders inside the
snapshot_root_directory, then use ignored_folders to specify those.

• conda_environment_file: The conda configuration file that describes which packages are necessary for your
script to run. If omitted, the hi-ml package searches for a file called environment.yml in the current folder or
its parents.

You can also supply an input dataset. For data pre-processing scripts, you can add an output dataset (omit this for ML
training scripts).

4 Chapter 1. First steps: How to run your Python code in the cloud

https://docs.microsoft.com/en-us/azure/machine-learning/how-to-create-attach-compute-studio#amlcompute

hi-ml

• To use datasets, you need to provision a data store in your AML workspace, that points to your training data in
blob storage. This is described here.

• input_datasets=["images123"] in the code above means that the script will consume all data in folder
images123 in blob storage as the input. The folder must exist in blob storage, in the location that you gave when
creating the datastore. Once the script has run, it will also register the data in this folder as an AML dataset.

• output_datasets=["images123_resized"] means that the script will create a temporary folder when run-
ning in AML, and while the job writes data to that folder, upload it to blob storage, in the data store.

For more examples, please see examples.md. For more details about datasets, see here.

1.4 Additional arguments you should know about

submit_to_azure_if_needed has a large number of arguments, please check the API documentation for an exhaus-
tive list. The particularly helpful ones are listed below.

• experiment_name: All runs in AzureML are grouped in “experiments”. By default, the experiment name is
determined by the name of the script you submit, but you can specify a name explicitly with this argument.

• environment_variables: A dictionary with the contents of all environment variables that should be set inside
the AzureML run, before the script is started.

• docker_base_image: This specifies the name of the Docker base image to use for creating the Python environ-
ment for your script. The amount of memory to allocate for Docker is given by docker_shm_size.

• num_nodes: The number of nodes on which your script should run. This is essential for distributed training.

• tags: A dictionary mapping from string to string, with additional tags that will be stored on the AzureML run.
This is helpful to add metadata about the run for later use.

1.5 Conda environments, Alternate pips, Private wheels

The function submit_to_azure_if_needed tries to locate a Conda environment file in the current folder, or in the
Python path, with the name environment.yml. The actual Conda environment file to use can be specified directly
with:

run_info = submit_to_azure_if_needed(
...
conda_environment_file=conda_environment_file,

where conda_environment_file is a pathlib.Path or a string identifying the Conda environment file to use.

The basic use of Conda assumes that packages listed are published Conda packages or published Python packages on
PyPI. However, during development, the Python package may be on Test.PyPI, or in some other location, in which case
the alternative package location can be specified directly with:

run_info = submit_to_azure_if_needed(
...
pip_extra_index_url="https://test.pypi.org/simple/",

Finally, it is possible to use a private wheel, if the package is only available locally with:

1.4. Additional arguments you should know about 5

https://docs.microsoft.com/en-us/azure/machine-learning/how-to-connect-data-ui
https://docs.conda.io/projects/conda/en/latest/user-guide/concepts/packages.html
https://pypi.org/
https://test.pypi.org/

hi-ml

run_info = submit_to_azure_if_needed(
...
private_pip_wheel_path=private_pip_wheel_path,

where private_pip_wheel_path is a pathlib.Path or a string identifying the wheel package to use. In this case,
this wheel will be copied to the AzureML environment as a private wheel.

6 Chapter 1. First steps: How to run your Python code in the cloud

CHAPTER

TWO

CONNECTING TO AZURE

2.1 Authentication

The hi-ml package uses two possible ways of authentication with Azure. The default is what is called “Interactive
Authentication”. When you submit a job to Azure via hi-ml, this will use the credentials you used in the browser when
last logging into Azure. If there are no credentials yet, you should see instructions printed out to the console about how
to log in using your browser.

We recommend using Interactive Authentication.

Alternatively, you can use a so-called Service Principal, for example within build pipelines.

2.2 Service Principal Authentication

A Service Principal is a form of generic identity or machine account. This is essential if you would like to submit
training runs from code, for example from within an Azure pipeline. You can find more information about application
registrations and service principal objects here.

If you would like to use Service Principal, you will need to create it in Azure first, and then store 3 pieces of information
in 3 environment variables — please see the instructions below. When all the 3 environment variables are in place,
your Azure submissions will automatically use the Service Principal to authenticate.

2.2.1 Creating the Service Principal

1. Navigate back to aka.ms/portal

2. Navigate to App registrations (use the top search bar to find it).

3. Click on + New registration on the top left of the page.

4. Choose a name for your application e.g. MyServicePrincipal and click Register.

5. Once it is created you will see your application in the list appearing under App registrations. This step might
take a few minutes.

6. Click on the resource to access its properties. In particular, you will need the application ID. You can find this
ID in the Overview tab (accessible from the list on the left of the page).

7. Create an environment variable called HIML_SERVICE_PRINCIPAL_ID, and set its value to the application ID
you just saw.

8. You need to create an application secret to access the resources managed by this service principal. On the pane
on the left find Certificates & Secrets. Click on + New client secret (bottom of the page), note down

7

https://docs.microsoft.com/en-us/azure/active-directory/develop/app-objects-and-service-principals
https://aka.ms/portal

hi-ml

your token. Warning: this token will only appear once at the creation of the token, you will not be able to
re-display it again later.

9. Create an environment variable called HIML_SERVICE_PRINCIPAL_PASSWORD, and set its value to the token
you just added.

2.2.2 Providing permissions to the Service Principal

Now that your service principal is created, you need to give permission for it to access and manage your AzureML
workspace. To do so:

1. Go to your AzureML workspace. To find it you can type the name of your workspace in the search bar above.

2. On the Overview page, there is a link to the Resource Group that contains the workspace. Click on that.

3. When on the Resource Group, navigate to Access control. Then click on + Add > Add role assignment.
A pane will appear on the the right. Select Role > Contributor. In the Select field type the name of your
Service Principal and select it. Finish by clicking Save at the bottom of the pane.

2.2.3 Azure Tenant ID

The last remaining piece is the Azure tenant ID, which also needs to be available in an environment variable. To get
that ID:

1. Log into Azure

2. Via the search bar, find “Azure Active Directory” and open it.

3. In the overview of that, you will see a field “Tenant ID”

4. Create an environment variable called HIML_TENANT_ID, and set that to the tenant ID you just saw.

8 Chapter 2. Connecting to Azure

CHAPTER

THREE

DATASETS

3.1 Key concepts

We’ll first outline a few concepts that are helpful for understanding datasets.

3.1.1 Blob Storage

Firstly, there is Azure Blob Storage. Each blob storage account has multiple containers - you can think of containers as
big disks that store files. The hi-ml package assumes that your datasets live in one of those containers, and each top
level folder corresponds to one dataset.

3.1.2 AzureML Data Stores

Secondly, there are data stores. This is a concept coming from Azure Machine Learning, described here. Data stores
provide access to one blob storage account. They exist so that the credentials to access blob storage do not have to be
passed around in the code - rather, the credentials are stored in the data store once and for all.

You can view all data stores in your AzureML workspace by clicking on one of the bottom icons in the left-hand
navigation bar of the AzureML studio.

One of these data stores is designated as the default data store.

3.1.3 AzureML Datasets

Thirdly, there are datasets. Again, this is a concept coming from Azure Machine Learning. A dataset is defined by

• A data store

• A set of files accessed through that data store

You can view all datasets in your AzureML workspace by clicking on one of the icons in the left-hand navigation bar
of the AzureML studio.

9

https://docs.microsoft.com/en-us/azure/storage/blobs/storage-blobs-introduction
https://docs.microsoft.com/en-us/azure/machine-learning/how-to-access-data

hi-ml

3.1.4 Preparing data

To simplify usage, the hi-ml package creates AzureML datasets for you. All you need to do is to

• Create a blob storage account for your data, and within it, a container for your data.

• Create a data store that points to that storage account, and store the credentials for the blob storage account in it

From that point on, you can drop a folder of files in the container that holds your data. Within the hi-ml package, just
reference the name of the folder, and the package will create a dataset for you, if it does not yet exist.

3.2 Using the datasets

The simplest way of specifying that your script uses a folder of data from blob storage is as follows: Add the
input_datasets argument to your call of submit_to_azure_if_needed like this:

from health_azure import submit_to_azure_if_needed
run_info = submit_to_azure_if_needed(...,

input_datasets=["my_folder"],
default_datastore="my_datastore")

input_folder = run_info.input_datasets[0]

What will happen under the hood?

• The toolbox will check if there is already an AzureML dataset called “my_folder”. If so, it will use that. If there
is no dataset of that name, it will create one from all the files in blob storage in folder “my_folder”. The dataset
will be created using the data store provided, “my_datastore”.

• Once the script runs in AzureML, it will download the dataset “my_folder” to a temporary folder.

• You can access this temporary location by run_info.input_datasets[0], and read the files from it.

More complicated setups are described below.

3.2.1 Input and output datasets

Any run in AzureML can consume a number of input datasets. In addition, an AzureML run can also produce an output
dataset (or even more than one).

Output datasets are helpful if you would like to run, for example, a script that transforms one dataset into another.

You can use that via the output_datasets argument:

from health_azure import submit_to_azure_if_needed
run_info = submit_to_azure_if_needed(...,

input_datasets=["my_folder"],
output_datasets=["new_dataset"],
default_datastore="my_datastore")

input_folder = run_info.input_datasets[0]
output_folder = run_info.output_datasets[0]

Your script can now read files from input_folder, transform them, and write them to output_folder. The latter
will be a folder on the temp file system of the machine. At the end of the script, the contents of that temp folder will be
uploaded to blob storage, and registered as a dataset.

10 Chapter 3. Datasets

hi-ml

3.2.2 Mounting and downloading

An input dataset can be downloaded before the start of the actual script run, or it can be mounted. When mounted, the
files are accessed via the network once needed - this is very helpful for large datasets where downloads would create a
long waiting time before the job start.

Similarly, an output dataset can be uploaded at the end of the script, or it can be mounted. Mounting here means that
all files will be written to blob storage already while the script runs (rather than at the end).

Note: If you are using mounted output datasets, you should NOT rename files in the output folder.

Mounting and downloading can be triggered by passing in DatasetConfig objects for the input_datasets argu-
ment, like this:

from health_azure import DatasetConfig, submit_to_azure_if_needed
input_dataset = DatasetConfig(name="my_folder", datastore="my_datastore", use_
→˓mounting=True)
output_dataset = DatasetConfig(name="new_dataset", datastore="my_datastore", use_
→˓mounting=True)
run_info = submit_to_azure_if_needed(...,

input_datasets=[input_dataset],
output_datasets=[output_dataset])

input_folder = run_info.input_datasets[0]
output_folder = run_info.output_datasets[0]

3.2.3 Local execution

For debugging, it is essential to have the ability to run a script on a local machine, outside of AzureML. Clearly, your
script needs to be able to access data in those runs too.

There are two ways of achieving that: Firstly, you can specify an equivalent local folder in the DatasetConfig objects:

from pathlib import Path
from health_azure import DatasetConfig, submit_to_azure_if_needed
input_dataset = DatasetConfig(name="my_folder",

datastore="my_datastore",
local_folder=Path("/datasets/my_folder_local"))

run_info = submit_to_azure_if_needed(...,
input_datasets=[input_dataset])

input_folder = run_info.input_datasets[0]

Secondly, if local_folder is not specified, then the dataset will either be downloaded or mounted to a temporary
folder locally, depending on the use_mounting flag. The path to it will be available in run_info as above.

input_folder = run_info.input_datasets[0]

Note that mounting the dataset locally is only supported on Linux because it requires the use of the native package lib-
fuse, which must first be installed. Also, if running in a Docker container, it must be started with additional arguments.
For more details see here: azureml.data.filedataset.mount.

3.2. Using the datasets 11

https://github.com/libfuse/libfuse/
https://github.com/libfuse/libfuse/
https://docs.microsoft.com/en-us/python/api/azureml-core/azureml.data.filedataset?view=azure-ml-py#mount-mount-point-none----kwargs-

hi-ml

3.2.4 Making a dataset available at a fixed folder location

Occasionally, scripts expect the input dataset at a fixed location, for example, data is always read from /tmp/mnist.
AzureML has the capability to download/mount a dataset to such a fixed location. With the hi-ml package, you can
trigger that behaviour via an additional option in the DatasetConfig objects:

from health_azure import DatasetConfig, submit_to_azure_if_needed
input_dataset = DatasetConfig(name="my_folder",

datastore="my_datastore",
use_mounting=True,
target_folder="/tmp/mnist")

run_info = submit_to_azure_if_needed(...,
input_datasets=[input_dataset])

Input_folder will now be "/tmp/mnist"
input_folder = run_info.input_datasets[0]

This is also true when running locally - if local_folder is not specified and an AzureML workspace can be found,
then the dataset will be downloaded or mounted to the target_folder.

3.2.5 Dataset versions

AzureML datasets can have versions, starting at 1. You can view the different versions of a dataset in the AzureML
workspace. In the hi-ml toolbox, you would always use the latest version of a dataset unless specified otherwise. If
you do need a specific version, use the version argument in the DatasetConfig objects:

from health_azure import DatasetConfig, submit_to_azure_if_needed
input_dataset = DatasetConfig(name="my_folder",

datastore="my_datastore",
version=7)

run_info = submit_to_azure_if_needed(...,
input_datasets=[input_dataset])

input_folder = run_info.input_datasets[0]

12 Chapter 3. Datasets

CHAPTER

FOUR

HYPERPARAMETER SEARCH VIA HYPERDRIVE

HyperDrive runs can start multiple AzureML jobs in parallel. This can be used for tuning hyperparameters, or exe-
cuting multiple training runs for cross validation. To use that with the hi-ml package, simply supply a HyperDrive
configuration object as an additional argument. Note that this object needs to be created with an empty run_config
argument (this will later be replaced with the correct run_config that submits your script.)

The example below shows a hyperparameter search that aims to minimize the validation loss val_loss, by choosing
one of three possible values for the learning rate commandline argument learning_rate.

from azureml.core import ScriptRunConfig
from azureml.train.hyperdrive import GridParameterSampling, HyperDriveConfig,␣
→˓PrimaryMetricGoal, choice
from health_azure import submit_to_azure_if_needed
hyperdrive_config = HyperDriveConfig(

run_config=ScriptRunConfig(source_directory=""),
hyperparameter_sampling=GridParameterSampling(

parameter_space={
"learning_rate": choice([0.1, 0.01, 0.001])

}),
primary_metric_name="val_loss",
primary_metric_goal=PrimaryMetricGoal.MINIMIZE,
max_total_runs=5

)
submit_to_azure_if_needed(..., hyperdrive_config=hyperdrive_config)

For further examples, please check the example scripts here, and the HyperDrive documentation.

13

https://docs.microsoft.com/en-us/azure/machine-learning/how-to-tune-hyperparameters
https://docs.microsoft.com/en-us/azure/machine-learning/how-to-tune-hyperparameters

hi-ml

14 Chapter 4. Hyperparameter Search via Hyperdrive

CHAPTER

FIVE

USING CHEAP LOW PRIORITY VMS

By using Low Priority machines in AzureML, we can run training at greatly reduced costs (around 20% of the original
price, see references below for details). This comes with the risk, though, of having the job interrupted and later
re-started. This document describes the inner workings of Low Priority compute, and how to best make use of it.

Because the jobs can get interrupted, low priority machines are not suitable for production workload where time is
critical. They do offer a lot of benefits though for long-running training jobs or large scale experimentation, that would
otherwise be expensive to carry out.

5.1 Setting up the Compute Cluster

Jobs in Azure Machine Learning run in a “compute cluster”. When creating a compute cluster, we can specify the
size of the VM, the type and number of GPUs, etc. Doing this via the AzureML UI is described here. Doing it
programmatically is described here

One of the setting to tweak when creating the compute cluster is whether the machines are “Dedicated” or “Low
Priority”:

• Dedicated machines will be permanently allocated to your compute cluster. The VMs in a dedicated cluster will
be always available, unless the cluster is set up in a way that it removes idle machine. Jobs will not be interrupted.

• Low priority machines effectively make use of spare capacity in the data centers, you can think of them as
“dedicated machines that are presently idle”. They are available at a much lower price (around 20% of the price
of a dedicated machine). These machines are made available to you until they are needed as dedicated machines
somewhere else.

In order to get a compute cluster that operates at the lowest price point, choose

• Low priority machines

• Set “Minimum number of nodes” to 0, so that the cluster removes all idle machines if no jobs are running.

For details on pricing, check this Azure price calculator, choose “Category: GPU”. The price for low priority VMs is
given in the “Spot” column

15

https://docs.microsoft.com/en-us/azure/machine-learning/how-to-create-attach-compute-studio#amlcompute
https://docs.microsoft.com/en-us/azure/machine-learning/how-to-create-attach-compute-cluster?tabs=python
https://azure.microsoft.com/en-us/pricing/details/virtual-machine-scale-sets/linux/

hi-ml

5.2 Behaviour of Low Priority VMs

Jobs can be interrupted at any point, this is called “low priority preemption”. When interrupted, the job stops - there
is no signal that we can make use of to do cleanup or something. All the files that the job has produced up to that point
in the outputs and logs folders will be saved to the cloud.

At some later point, the job will be assigned a virtual machine again. When re-started, all the files that the job had
produced in its previous run will be available on disk again where they were before interruption, mounted at the same
path. That is, if the interrupted job wrote a file outputs/foo.txt, this file will be accessible as outputs/foo.txt
also after the restart.

Note that all AzureML-internal log files that the job produced in a previous run will be overwritten (this behaviour
may change in the future). That is in contrast to the behaviour for metrics that the interrupted job had saved to AzureML
already (for example, metrics written by a call like Run.log("loss", loss_tensor.item())): Those metrics are
already stored in AzureML, and will still be there when the job restarts. The re-started job will then append to the
metrics that had been written in the previous run. This typically shows as sudden jumps in metrics, as illustrated here:

In this example, the learning rate
was increasing for the first 6 or so epochs. Then the job got preempted, and started training from scratch, with the initial
learning rate and schedule. Note that this behaviour is only an artifact of how the metrics are stored in AzureML, the
actual training is doing the right thing.

How do you verify that your job got interrupted? Usually, you would see a warning displayed on the job page in the
AzureML UI, that says something along the lines of “Low priority compute preemption warning: a node has been
preempted.” . You can use kinks in metrics as another indicator that your job got preempted: Sudden jumps in metrics
after which the metric follows a shape similar to the one at job start usually indicates low priority preemption.

Note that a job can be interrupted more than one time.

16 Chapter 5. Using Cheap Low Priority VMs

hi-ml

5.3 Best Practice Guide for Your Jobs

In order to make best use of low priority compute, your code needs to be made resilient to restarts. Essentially, this
means that it should write regular checkpoints, and try to use those checkpoint files if they already exist. Examples of
how to best do that are given below.

In addition, you need to bear in mind that the job can be interrupted at any moment, for example when it is busy
uploading huge checkpoint files to Azure. When trying to upload again after restart, there can be resource collisions.

5.3.1 Writing and Using Recovery Checkpoints

When using PyTorch Lightning, you can add a checkpoint callback to your trainer, that ensures that you save the model
and optimizer to disk in regular intervals. This callback needs to be added to your Trainer object. Note that these
recovery checkpoints need to be written to the outputs folder, because only files in this folder get saved to Azure
automatically when the job gets interrupted.

When starting training, your code needs to check if there is already a recovery checkpoint present on disk. If so, training
should resume from that point.

Here is a code snippet that illustrates all that:

import re
from pathlib import Path
import numpy as np
from health_ml.utils import AzureMLLogger
from pytorch_lightning import Trainer
from pytorch_lightning.callbacks import ModelCheckpoint

RECOVERY_CHECKPOINT_FILE_NAME = "recovery_"
CHECKPOINT_FOLDER = "outputs/checkpoints"

def get_latest_recovery_checkpoint():
all_recovery_files = [f for f in Path(CHECKPOINT_FOLDER).glob(RECOVERY_CHECKPOINT_

→˓FILE_NAME + "*")]
if len(all_recovery_files) == 0:

return None
Get recovery checkpoint with highest epoch number
recovery_epochs = [int(re.findall(r"[\d]+", f.stem)[0]) for f in all_recovery_files]
idx_max_epoch = int(np.argmax(recovery_epochs))
return str(all_recovery_files[idx_max_epoch])

recovery_checkpoint = ModelCheckpoint(dirpath=CHECKPOINT_FOLDER,
filename=RECOVERY_CHECKPOINT_FILE_NAME + "{epoch}",
period=10)

trainer = Trainer(default_root_dir="outputs",
callbacks=[recovery_checkpoint],
logger=[AzureMLLogger()],
resume_from_checkpoint=get_latest_recovery_checkpoint())

5.3. Best Practice Guide for Your Jobs 17

hi-ml

5.4 Additional Optimizers and Other State

In order to be resilient to interruption, your jobs need to save all their state to disk. In PyTorch Lightning training, this
would include all optimizers that you are using. The “normal” optimizer for model training is saved to the checkpoint
by Lightning already. However, you may be using callbacks or other components that maintain state. As an example,
training a linear head for self-supervised learning can be done in a callback, and that callback can have its own optimizer.
Such callbacks need to correctly implement the on_save_checkpoint method to save their state to the checkpoint,
and on_load_checkpoint to load it back in.

For more information about persisting state, check the PyTorch Lightning documentation .

18 Chapter 5. Using Cheap Low Priority VMs

https://pytorch-lightning.readthedocs.io/en/latest/extensions/callbacks.html?highlight=callback#persisting-state

CHAPTER

SIX

COMMANDLINE TOOLS

6.1 Run TensorBoard

From the command line, run the command

himl-tb

specifying one of [--experiment] [--latest_run_file] [--run]

This will start a TensorBoard session, by default running on port 6006. To use an alternative port, specify this with
--port.

If --experiment is provided, the most recent Run from this experiment will be visualised. If --latest_run_file
is provided, the script will expect to find a RunId in this file. Alternatively you can specify the Runs to visualise via
--run. This can be a single run id, or multiple ids separated by commas. This argument also accepts one or more run
recovery ids, although these are not recommended since it is no longer necessary to provide an experiment name in
order to recovery an AML Run.

By default, this tool expects that your TensorBoard logs live in a folder named ‘logs’ and will create a similarly named
folder in your root directory. If your TensorBoard logs are stored elsewhere, you can specify this with the --log_dir
argument.

If you choose to specify --experiment, you can also specify --num_runs to view and/or --tags to filter by.

If your AML config path is not ROOT_DIR/config.json, you must also specify --config_file.

To see an example of how to create TensorBoard logs using PyTorch on AML, see the AML submitting script which
submits the following pytorch sample script. Note that to run this, you’ll need to create an environment with pytorch
and tensorboard as dependencies, as a minimum. See an example conda environemnt. This will create an experiment
named ‘tensorboard_test’ on your Workspace, with a single run. Go to outputs + logs -> outputs to see the tensorboard
events file.

6.2 Download files from AML Runs

From the command line, run the command

himl-download

specifying one of [--experiment] [--latest_run_file] [--run]

If --experiment is provided, the most recent Run from this experiment will be downloaded. If --latest_run_file
is provided, the script will expect to find a RunId in this file. Alternatively you can specify the Run to download via
--run. This can be a single run id, or multiple ids separated by commas. This argument also accepts one or more run
recovery ids, although these are not recommended since it is no longer necessary to provide an experiment name in
order to recovery an AML Run.

19

hi-ml

The files associated with your Run will be downloaded to the location specified with --output_dir (by default
ROOT_DIR/outputs)

If you choose to specify --experiment, you can also specify --tags to filter by.

If your AML config path is not ROOT_DIR/config.json, you must also specify --config_file.

6.3 Creating your own command line tools

When creating your own command line tools that interact with the Azure ML ecosystem, you may wish to use the
AmlRunScriptConfig class for argument parsing. This gives you a quickstart way for accepting command line argu-
ments to specify the following

• experiment: a string representing the name of an Experiment, from which to retrieve AML runs

• tags: to filter the runs within the given experiment

• num_runs: to define the number of most recent runs to return from the experiment

• run: to instead define one or more run ids from which to retrieve runs (also supports the older format of run
recovery ideas although these are obsolete now)

• latest_run_file: to instead provide a path to a file containing the id of your latest run, for retrieval.

• config_path: to specify a config.json file in which your workspace settings are defined

You can extend this list of arguments by creating a child class that inherits from AMLRunScriptConfig.

6.3.1 Defining your own argument types

Additional arguments can have any of the following types: bool, integer, float, string, list, class/class
instance with no additional work required. You can also define your own custom type, by providing a custom class
in your code that inherits from CustomTypeParam. It must define 2 methods:

1. _validate(self, x: Any): which should raise a ValueError if x is not of the type you expect, and should
also make a call super()._validate(val)

2. from_string(self, y: string) which takes in the command line arg as a string (y) and returns an in-
stance of the type that you want. For example, if your custom type is a tuple, this method should create a
tuple from the input string and return that. An example of a custom type can be seen in our own custom type:
RunIdOrListParam, which accepts a string representing one or more run ids (or run recovery ids) and returns
either a List or a single RunId object (or RunRecoveryId object if appropriate)

6.3.2 Example:

class EvenNumberParam(util.CustomTypeParam):
""" Our custom type param for even numbers """

def _validate(self, val: Any) -> None:
if (not self.allow_None) and val is None:

raise ValueError("Value must not be None")
if val % 2 != 0:

raise ValueError(f"{val} is not an even number")
super()._validate(val) # type: ignore

(continues on next page)

20 Chapter 6. Commandline tools

hi-ml

(continued from previous page)

def from_string(self, x: str) -> int:
return int(x)

class MyScriptConfig(util.AmlRunScriptConfig):
example of a generic param
simple_string: str = param.String(default="")
example of a custom param
even_number = EvenNumberParam(2, doc="your choice of even number")

6.3. Creating your own command line tools 21

hi-ml

22 Chapter 6. Commandline tools

CHAPTER

SEVEN

DOWNLOADING FROM/ UPLOADING TO AZURE ML

All of the below functions will attempt to find a current workspace, if running in Azure ML, or else will attempt to
locate ‘config.json’ file in the current directory, and its parents. Alternatively, you can specify your own Workspace
object or a path to a file containing the workspace settings.

7.1 Download files from an Azure ML Run

To download all files from an AML Run, given its run id, perform the following:

from pathlib import Path
from health_azure import download_files_from_run_id
run_id = "example_run_id_123"
output_folder = Path("path/to/save")
download_files_from_run_id(run_id, output_folder)

Here, “path_to_save” represents the folder in which we want the downloaded files to be stored. E.g. if your run contains
the files [“abc/def/1.txt”, “abc/2.txt”] and you specify the prefix “abc” and the output_folder “my_outputs”, you’ll end
up with the files [“my_outputs/abc/def/1.txt”, “my_outputs/abc/2.txt”]

If you wish to specify the file name(s) to be downloaded, you can do so with the “prefix” parameter. E.g. pre-
fix=”outputs” will download all files within the “output” folder, if such a folder exists within your Run.

There is an additional parameter, “validate_checksum” which defaults to False. If True, will validate MD5 hash of the
data arriving (in chunks) to that being sent.

Note that if your code is running in a distributed manner, files will only be downloaded onto nodes with local rank = 0.
E.g. if you have 2 nodes each running 4 processes, the file will be downloaded by CPU/GPU 0 on each of the 2 nodes.
All processes will be synchronized to only exit the downloading method once it has completed on all nodes/ranks.

7.2 Downloading checkpoint files from a run

To download checkpoint files from an Azure ML Run, perform the following:

from pathlib import Path
from health_azure import download_checkpoints_from_run_id
download_checkpoints_from_run_id("example_run_id_123", Path("path/to/checkpoint/directory
→˓"))

All files within the checkpoint directory will be downloaded into the folder specified by “path/to/checkpoint_directory”.

23

hi-ml

Since checkpoint files are often large and therefore prone to corruption during download, by default, this function will
validate the MD5 hash of the data downloaded (in chunks) compared to that being sent.

Note that if your code is running in a distributed manner, files will only be downloaded onto nodes with local rank = 0.
E.g. if you have 2 nodes each running 4 processes, the file will be downloaded by CPU/GPU 0 on each of the 2 nodes.
All processes will be synchronized to only exit the downloading method once it has completed on all nodes/ranks.

7.3 Downloading files from an Azure ML Datastore

To download data from an Azure ML Datastore within your Workspace, follow this example:

from pathlib import Path
from health_azure import download_from_datastore
download_from_datastore("datastore_name", "prefix", Path("path/to/output/directory"))

where “prefix” represents the path to the file(s) to be downloaded, relative to the datastore “datastore_name”. Azure will
search for files within the Datastore whose paths begin with this string. If you wish to download multiple files from the
same folder, set equal to that folder’s path within the Datastore. If you wish to download a single file, include both the
path to the folder it resides in, as well as the filename itself. If the relevant file(s) are found, they will be downloaded
to the folder specified by <output_folder>. If this directory does not already exist, it will be created. E.g. if your
datastore contains the paths [“foo/bar/1.txt”, “foo/bar/2.txt”] and you call this function with file_prefix=”foo/bar” and
output_folder=”outputs”, you would end up with the files [“outputs/foo/bar/1.txt”, “outputs/foo/bar/2.txt”]

This function takes additional parameters “overwrite” and “show_progress”. If True, overwrite will overwrite any
existing local files with the same path. If False and there is a duplicate file, it will skip this file. If show_progress is set
to True, the progress of the file download will be visible in the terminal.

7.4 Uploading files to an Azure ML Datastore

To upload data to an Azure ML Datastore within your workspace, perform the following:

from pathlib import Path
from health_azure import upload_to_datastore
upload_to_datastore("datastore_name", Path("path/to/local/data/folder"), Path("path/to/
→˓datastore/folder"))

Where “datastore_name” is the name of the registered Datastore within your workspace that you wish to upload to and
“path/to/datastore/folder” is the relative path within this Datastore that you wish to upload data to. Note that the path to
local data must be a folder, not a single path. The folder name will not be included in the remote path. E.g. if you specify
the local_data_dir=”foo/bar” and that contains the files [“1.txt”, “2.txt”], and you specify the remote_path=”baz”, you
would see the following paths uploaded to your Datastore: [“baz/1.txt”, “baz/2.txt”]

This function takes additional parameters “overwrite” and “show_progress”. If True, overwrite will overwrite any
existing remote files with the same path. If False and there is a duplicate file, it will skip this file. If show_progress is
set to True, the progress of the file upload will be visible in the terminal.

24 Chapter 7. Downloading from/ uploading to Azure ML

CHAPTER

EIGHT

EXAMPLES

Note: All examples below contain links to sample scripts that are also included in the repository. The experience is
optimized for use on readthedocs. When navigating to the sample scripts on the github UI, you will only see the .rst
file that links to the .py file. To access the .py file, go to the folder that contains the respective .rst file.

8.1 Basic integration

The sample examples/1/sample.py is a script that takes an optional command line argument of a target value and prints
all the prime numbers up to (but not including) this target. It is simply intended to demonstrate a long running operation
that we want to run in Azure. Run it using e.g.

cd examples/1
python sample.py -n 103

The sample examples/2/sample.py shows the minimal modifications to run this in AzureML. Firstly create an AzureML
workspace and download the config file, as explained here. The config file should be placed in the same folder as the
sample script. A sample Conda environment file is supplied. Import the hi-ml package into the current environment.
Finally add the following to the sample script:

from health_azure import submit_to_azure_if_needed
...

def main() -> None:
_ = submit_to_azure_if_needed(

compute_cluster_name="lite-testing-ds2",
wait_for_completion=True,
wait_for_completion_show_output=True)

Replace lite-testing-ds2 with the name of a compute cluster created within the AzureML workspace. If this script
is invoked as the first sample, e.g.

cd examples/2
python sample.py -n 103

then the output will be exactly the same. But if the script is invoked as follows:

cd examples/2
python sample.py -n 103 --azureml

then the function submit_to_azure_if_needed will perform all the required actions to run this script in AzureML
and exit. Note that:

• code after submit_to_azure_if_needed is not run locally, but it is run in AzureML.

25

https://docs.microsoft.com/en-us/azure/machine-learning/how-to-configure-environment
https://pypi.org/project/hi-ml/

hi-ml

• the print statement prints to the AzureML console output and is available in the Output + logs tab of the
experiment in the 70_driver_log.txt file, and can be downloaded from there.

• the command line arguments are passed through (apart from –azureml) when running in AzureML.

• a new file: most_recent_run.txt will be created containing an identifier of this AzureML run.

A sample script examples/2/results.py demonstrates how to programmatically download the driver log file.

8.2 Output files

The sample examples/3/sample.py demonstrates output file handling when running on AzureML. Because each run is
performed in a separate VM or cluster then any file output is not generally preserved. In order to keep the output it
should be written to the outputs folder when running in AzureML. The AzureML infrastructure will preserve this
and it will be available for download from the outputs folder in the Output + logs tab.

Make the following additions:

from health_azure import submit_to_azure_if_needed
run_info = submit_to_azure_if_needed(
...
parser.add_argument("-o", "--output", type=str, default="primes.txt", required=False,

→˓ help="Output file name")
...
output = run_info.output_folder / args.output
output.write_text("\n".join(map(str, primes)))

When running locally submit_to_azure_if_needed will create a subfolder called outputs and then the output can
be written to the file args.output there. When running in AzureML the output will be available in the file args.
output in the Experiment.

A sample script examples/3/results.py demonstrates how to programmatically download the output file.

8.3 Output datasets

The sample examples/4/sample.py demonstrates output dataset handling when running on AzureML.

In this case, the following parameters are added to submit_to_azure_if_needed:

from health_azure import submit_to_azure_if_needed
run_info = submit_to_azure_if_needed(

...
default_datastore="himldatasets",
output_datasets=["himl_sample4_output"],

The default_datastore is required if using the simplest configuration for an output dataset, to just use the blob
container name. There is an alternative that doesn’t require the default_datastore and allows a different datastore
for each dataset:

from health_azure import DatasetConfig, submit_to_azure_if_needed
...
run_info = submit_to_azure_if_needed(

...
output_datasets=[DatasetConfig(name="himl_sample4_output", datastore=

→˓"himldatasets")] (continues on next page)

26 Chapter 8. Examples

hi-ml

(continued from previous page)

Now the output folder is constructed as follows:

output_folder = run_info.output_datasets[0] or Path("outputs") / "himl_sample4_output
→˓"

output_folder.mkdir(parents=True, exist_ok=True)
output = output_folder / args.output

When running in AzureML run_info.output_datasets[0] will be populated using the new parameter and the
output will be written to that blob storage. When running locally run_info.output_datasets[0] will be None and
a local folder will be created and used.

A sample script examples/4/results.py demonstrates how to programmatically download the output dataset file.

For more details about datasets, see here

8.4 Input datasets

This example trains a simple classifier on a toy dataset, first creating the dataset files and then in a second script training
the classifier.

The script examples/5/inputs.py is provided to prepare the csv files. Run the script to download the Iris dataset and
create two CSV files:

cd examples/5
python inputs.py

The training script examples/5/sample.py is modified from https://github.com/Azure/MachineLearningNotebooks/
blob/master/how-to-use-azureml/ml-frameworks/scikit-learn/train-hyperparameter-tune-deploy-with-sklearn/train_
iris.py to work with input csv files. Start it to train the actual classifier, based on the data files that were just written:

cd examples/5
python sample.py

8.4.1 Including input files in the snapshot

When using very small datafiles (in the order of few MB), the easiest way to get the input data to Azure is to include
them in the set of (source) files that are uploaded to Azure. You can run the dataset creation script on your local
machine, writing the resulting two files to the same folder where your training script is located, and then submit the
training script to AzureML. Because the dataset files are in the same folder, they will automatically be uploaded to
AzureML.

However, it is not ideal to have the input files in the snapshot: The size of the snapshot is limited to 25 MB. It is better
to put the data files into blob storage and use input datasets.

8.4. Input datasets 27

https://github.com/Azure/MachineLearningNotebooks/blob/master/how-to-use-azureml/ml-frameworks/scikit-learn/train-hyperparameter-tune-deploy-with-sklearn/train_iris.py
https://github.com/Azure/MachineLearningNotebooks/blob/master/how-to-use-azureml/ml-frameworks/scikit-learn/train-hyperparameter-tune-deploy-with-sklearn/train_iris.py
https://github.com/Azure/MachineLearningNotebooks/blob/master/how-to-use-azureml/ml-frameworks/scikit-learn/train-hyperparameter-tune-deploy-with-sklearn/train_iris.py

hi-ml

8.4.2 Creating the dataset in AzureML

The suggested way of creating a dataset is to run a script in AzureML that writes an output dataset. This is particularly
important for large datasets, to avoid the usually low bandwith from a local machine to the cloud.

This is shown in examples/6/inputs.py: This script prepares the CSV files in an AzureML run, and writes them to an
output dataset called himl_sample6_input. The relevant code parts are:

run_info = submit_to_azure_if_needed(
compute_cluster_name="lite-testing-ds2",
default_datastore="himldatasets",
output_datasets=["himl_sample6_input"])

The dataset files should be written into this folder:
dataset = run_info.output_datasets[0] or Path("dataset")

Run the script:

cd examples/6
python inputs.py --azureml

You can now modify the training script examples/6/sample.py to use the newly created dataset himl_sample6_input
as an input. To do that, the following parameters are added to submit_to_azure_if_needed:

run_info = submit_to_azure_if_needed(
compute_cluster_name="lite-testing-ds2",
default_datastore="himldatasets",
input_datasets=["himl_sample6_input"])

When running in AzureML, the dataset will be downloaded before running the job. You can access the temporary
folder where the dataset is available like this:

input_folder = run_info.input_datasets[0] or Path("dataset")

The part behind the or statement is only necessary to keep a reasonable behaviour when running outside of AzureML:
When running in AzureML run_info.input_datasets[0] will be populated using input dataset specified in the
call to submit_to_azure_if_needed, and the input will be downloaded from blob storage. When running locally
run_info.input_datasets[0] will be None and a local folder should be populated and used.

The default_datastore is required if using the simplest configuration for an input dataset. There are alternatives
that do not require the default_datastore and allows a different datastore for each dataset, for example:

from health_azure import DatasetConfig, submit_to_azure_if_needed
...
run_info = submit_to_azure_if_needed(

...
input_datasets=[DatasetConfig(name="himl_sample7_input", datastore="himldatasets

→˓"],

For more details about datasets, see here

28 Chapter 8. Examples

hi-ml

8.4.3 Uploading the input files manually

An alternative to writing the dataset in AzureML (as suggested above) is to create them on the local machine, and
upload them manually directly to Azure blob storage.

This is shown in examples/7/inputs.py: This script prepares the CSV files and uploads them to blob storage, in a folder
called himl_sample7_input. Run the script:

cd examples/7
python inputs_via_upload.py

As in the above example, you can now modify the training script examples/7/sample.py to use an input dataset that
has the same name as the folder where the files just got uploaded. In this case, the following parameters are added to
submit_to_azure_if_needed:

run_info = submit_to_azure_if_needed(
...
default_datastore="himldatasets",
input_datasets=["himl_sample7_input"],

8.5 Hyperdrive

The sample examples/8/sample.py demonstrates adding hyperparameter tuning. This shows the same hyperparameter
search as in the AzureML sample.

Make the following additions:

from azureml.core import ScriptRunConfig
from azureml.train.hyperdrive import HyperDriveConfig, PrimaryMetricGoal, choice
from azureml.train.hyperdrive.sampling import RandomParameterSampling

...
def main() -> None:

param_sampling = RandomParameterSampling({
"--kernel": choice('linear', 'rbf', 'poly', 'sigmoid'),
"--penalty": choice(0.5, 1, 1.5)

})

hyperdrive_config = HyperDriveConfig(
run_config=ScriptRunConfig(source_directory=""),
hyperparameter_sampling=param_sampling,
primary_metric_name='Accuracy',
primary_metric_goal=PrimaryMetricGoal.MAXIMIZE,
max_total_runs=12,
max_concurrent_runs=4)

run_info = submit_to_azure_if_needed(
...
hyperdrive_config=hyperdrive_config)

Note that this does not make sense to run locally, it should always be run in AzureML. When invoked with:

cd examples/8
python sample.py --azureml

8.5. Hyperdrive 29

https://github.com/Azure/MachineLearningNotebooks/blob/master/how-to-use-azureml/ml-frameworks/scikit-learn/train-hyperparameter-tune-deploy-with-sklearn/train-hyperparameter-tune-deploy-with-sklearn.ipynb

hi-ml

this will perform a Hyperdrive run in AzureML, i.e. there will be 12 child runs, each randomly drawing from the
parameter sample space. AzureML can plot the metrics from the child runs, but to do that, some small modifications
are required.

Add in:

run = run_info.run
...
args = parser.parse_args()
run.log('Kernel type', np.str(args.kernel))
run.log('Penalty', np.float(args.penalty))
...
print('Accuracy of SVM classifier on test set: {:.2f}'.format(accuracy))
run.log('Accuracy', np.float(accuracy))

and these metrics will be displayed on the child runs tab in the Experiment page on AzureML.

8.6 Controlling when to submit to AzureML and when not

By default, the hi-ml package assumes that you supply a commandline argument --azureml (that can be anywhere on
the commandline) to trigger a submission of the present script to AzureML. If you wish to control it via a different flag,
coming out of your own argument parser, use the submit_to_azureml argument of the function health.azure.
himl.submit_to_azure_if_needed.

8.7 Training with k-fold cross validation in Azure ML

It is possible to create a parent run on Azure ML that is associated with one or more child runs (see here for further
information.) This is useful in circumstances such as k-fold cross-validation, where individual child run perform val-
idation on a different data split. When a HyperDriveRun is created in Azure ML, it follows this same principle and
generates multiple child runs, associated with one parent.

To train with k-fold cross validation using submit_to_azure_if_needed, you must do two things.

1. Call the helper function create_crossval_hyperdrive_config to create an AML HyperDriveConfig object
representing your parent run. It will have one child run for each of the k-fold splits you request, as follows

from health_azure import create_crossval_hyperdrive_config

hyperdrive_config = create_crossval_hyperdrive_config(num_splits,
cross_val_index_arg_

→˓name=cross_val_index_arg_name,
metric_name=metric_name)

where:

• num_splits is the number of k-fold cross validation splits you require

• cross_val_index_arg_name is the name of the argument given to each child run, whose value
denotes which split that child represents (this parameter defaults to ‘cross_validation_split_index’,
in which case, supposing you specified 2 cross validation splits, one would receive the arguments
[‘–cross_validation_split_index’ ‘0’] and the other would receive [‘–cross_validation_split_index’ ‘1’]].
It is up to you to then use these args to retrieve the correct split from your data.

30 Chapter 8. Examples

https://docs.microsoft.com/en-us/azure/machine-learning/how-to-track-monitor-analyze-runs?tabs=python#create-child-runs
https://docs.microsoft.com/en-us/python/api/azureml-train-core/azureml.train.hyperdrive.hyperdriverun?view=azure-ml-py

hi-ml

• metrics_name represents the name of a metric that you will compare your child runs by. NOTE the run
will expect to find this metric, otherwise it will fail as described here You can log this metric in your training
script as follows:

from azureml.core import Run

Example of logging a metric called <metric_name> to an AML Run.
loss = <my_loss_calc>
run_log = Run.get_context()
run_log.log(metric_name, loss)

See the documentation here for further explanation.

2. The hyperdrive_config returned above must be passed into the function submit_to_azure_if_needed as fol-
lows:

run_info = submit_to_azure_if_needed(
...
hyperdrive_config=hyperdrive_config

)

This will create a parent (HyperDrive) Run, with num_cross_validation_split children - each one associ-
ated with a different data split.

8.8 Retrieving the aggregated results of a cross validation/ Hyper-
Drive run

You can retrieve a Pandas DataFrame of the aggregated results from your cross validation run as follows:

from health_azure import aggregate_hyperdrive_metrics

df = aggregate_hyperdrive_metrics(run_id, child_run_arg_name)

where:

• run_id is a string representing the id of your HyperDriveRun. Note that this must be an instance of an AML
HyperDriveRun.

• child_run_arg_name is a string representing the name of the argument given to each child run to denote its
position relative to other child runs (e.g. this arg could equal ‘child_run_index’ - then each of your child runs
should expect to receive the arg ‘–child_run_index’ with a value <= the total number of child runs)

If your HyperDrive run has 2 children, each logging the metrics epoch, accuracy and loss, the result would look like
this:

	0	1
epoch	[1, 2, 3]	[1, 2, 3]
accuracy	[0.7, 0.8, 0.9]	[0.71, 0.82, 0.91]
loss	[0.5, 0.4, 0.3]	[0.45, 0.37, 0.29]

here each column is one of the splits/ child runs, and each row is one of the metrics you have logged to the run.

It is possible to log rows and tables in Azure ML by calling run.log_table and run.log_row respectively. In this case, the
DataFrame will contain a Dictionary entry instead of a list, where the keys are the table columns (or keywords provided

8.8. Retrieving the aggregated results of a cross validation/ HyperDrive run 31

https://docs.microsoft.com/en-us/azure/machine-learning/how-to-tune-hyperparameters#log-metrics-for-hyperparameter-tuning
https://docs.microsoft.com/en-us/azure/machine-learning/how-to-log-view-metrics

hi-ml

to log_row), and the values are the table values. e.g.

| | 0 | 1 ␣
→˓ |
|----------------|--|----------------------------
→˓---------------|
| accuracy_table |{'epoch': [1, 2], 'accuracy': [0.7, 0.8]} | {'epoch': [1, 2], 'accuracy
→˓': [0.8, 0.9]} |

It is also posisble to log plots in Azure ML by calling run.log_image and passing in a matplotlib plot. In this case, the
DataFrame will contain a string representing the path to the artifact that is generated by AML (the saved plot in the
Logs & Outputs pane of your run on the AML portal). E.g.

| | 0 | 1 ␣
→˓ |
|----------------|---|-----------------------------
→˓----------|
| accuracy_plot | aml://artifactId/ExperimentRun/dcid.... | aml://artifactId/
→˓ExperimentRun/dcid...|

32 Chapter 8. Examples

CHAPTER

NINE

LOGGING METRICS WHEN TRAINING MODELS IN AZUREML

This section describes the basics of logging to AzureML, and how this can be simplified when using PyTorch Lightning.
It also describes helper functions to make logging more consistent across your code.

9.1 Basics

The mechanics of writing metrics to an ML training run inside of AzureML are described here.

Using the hi-ml-azure toolbox, you can simplify that like this:

from health_azure import RUN_CONTEXT
...
RUN_CONTEXT.log(name="name_of_the_metric", value=my_tensor.item())

Similarly you can log strings (via the log_text method) or figures (via the log_image method), see the documenta-
tion.

9.2 Using PyTorch Lightning

The hi-ml toolbox relies on pytorch-lightning for a lot of its functionality. Logging of metrics is described in
detail here

hi-ml provides a Lightning-ready logger object to use with AzureML. You can add that to your trainer as you would
add a Tensorboard logger, and afterwards see all metrics in both your Tensorboard files and in the AzureML UI. This
logger can be added to the Trainer object as follows:

from health_ml.utils import AzureMLLogger
from pytorch_lightning.loggers import TensorBoardLogger
tb_logger = TensorBoardLogger("logs/")
azureml_logger = AzureMLLogger()
trainer = Trainer(logger=[tb_logger, azureml_logger])

You do not need to make any changes to your logging code to write to both loggers at the same time. This means that,
if your code correctly writes to Tensorboard in a local run, you can expect the metrics to come out correctly in the
AzureML UI as well after adding the AzureMLLogger.

33

https://docs.microsoft.com/en-us/azure/machine-learning/how-to-log-view-metrics
https://docs.microsoft.com/en-us/azure/machine-learning/how-to-log-view-metrics
https://docs.microsoft.com/en-us/azure/machine-learning/how-to-log-view-metrics
https://pytorch-lightning.readthedocs.io/en/latest/extensions/logging.html

hi-ml

9.3 Making logging consistent when training with PyTorch Lightning

A common problem of training scripts is that the calls to the logging methods tend to run out of sync. The .logmethod
of a LightningModule has a lot of arguments, some of which need to be set correctly when running on multiple GPUs.

To simplify that, there is a function log_on_epoch that turns synchronization across nodes on/off depending on the
number of GPUs, and always forces the metrics to be logged upon epoch completion. Use as follows:

from health_ml.utils import log_on_epoch
from pytorch_lightning import LightningModule

class MyModule(LightningModule):
def training_step(self, *args, **kwargs):

...
loss = my_loss(y_pred, y)
log_on_epoch(self, loss)
return loss

9.3.1 Logging learning rates

Logging learning rates is important for monitoring training, but again this can add overhead. To log learning rates
easily and consistently, we suggest either of two options:

• Add a LearningRateMonitor callback to your trainer, as described here

• Use the hi-ml function log_learning_rate

The log_learning_rate function can be used at any point the training code, like this:

from health_ml.utils import log_learning_rate
from pytorch_lightning import LightningModule

class MyModule(LightningModule):
def training_step(self, *args, **kwargs):

...
log_learning_rate(self, "learning_rate")
loss = my_loss(y_pred, y)
return loss

log_learning_rate will log values from all learning rate schedulers, and all learning rates if a scheduler returns
multiple values. In this example, the logged metric will be learning_rate if there is a single scheduler that outputs
a single LR, or learning_rate/1/0 to indicate the value coming from scheduler index 1, value index 0.

34 Chapter 9. Logging metrics when training models in AzureML

https://pytorch-lightning.readthedocs.io/en/latest/extensions/generated/pytorch_lightning.callbacks.LearningRateMonitor.html#pytorch_lightning.callbacks.LearningRateMonitor

CHAPTER

TEN

PERFORMANCE DIAGNOSTICS

The hi-ml toolbox offers several components to integrate with PyTorch Lightning based training workflows:

• The AzureMLProgressBar is a replacement for the default progress bar that the Lightning Trainer uses. Its
output is more suitable for display in an offline setup like AzureML.

• The BatchTimeCallback can be added to the trainer to detect performance issues with data loading.

10.1 AzureMLProgressBar

The standard PyTorch Lightning is well suited for interactive training sessions on a GPU machine, but its output can
get confusing when run inside AzureML. The AzureMLProgressBar class can replace the standard progress bar, and
optionally adds timestamps to each progress event. This makes it easier to later correlate training progress with, for
example, low GPU utilization showing in AzureML’s GPU monitoring.

Here’s a code snippet to add the progress bar to a PyTorch Lightning Trainer object:

from health_ml.utils import AzureMLProgressBar
from pytorch_lightning import Trainer

progress = AzureMLProgressBar(refresh_rate=100, print_timestamp=True)
trainer = Trainer(callbacks=[progress])

This produces progress information like this:

2021-10-20T06:06:07Z Training epoch 18 (step 94): 5/5 (100%) completed. 00:00 elapsed,
→˓ total epoch time ~ 00:00
2021-10-20T06:06:07Z Validation epoch 18: 2/2 (100%) completed. 00:00 elapsed, total␣
→˓epoch time ~ 00:00
2021-10-20T06:06:07Z Training epoch 19 (step 99): 5/5 (100%) completed. 00:00 elapsed,
→˓ total epoch time ~ 00:00
...

35

hi-ml

10.2 BatchTimeCallback

This callback can help diagnose issues with low performance of data loading. It captures the time between the end of a
training or validation step, and the start of the next step. This is often indicative of the time it takes to retrieve the next
batch of data: When the data loaders are not performant enough, this time increases.

The BatchTimeCallback will detect minibatches where the estimated data loading time is too high, and print alerts.
These alerts will be printed at most 5 times per epoch, for a maximum of 3 epochs, to avoid cluttering the output.

Note that it is common for the first minibatch of data in an epoch to take a long time to load, because data loader
processes need to spin up.

The callback will log a set of metrics:

• timing/train/batch_time [sec] avg and timing/train/batch_time [sec] max: Average and max-
imum time that it takes for batches to train/validate

• timing/train/batch_loading_over_threshold [sec] is the total time wasted per epoch in waiting for
the next batch of data. This is computed by looking at all batches where the batch loading time was over the
threshold max_batch_load_time_seconds (that is set in the constructor of the callback), and totalling the
batch loading time for those batches.

• timing/train/epoch_time [sec] is the time for an epoch to complete.

10.2.1 Caveats

• In distributed training, the performance metrics will be collected at rank 0 only.

• The time between the end of a batch and the start of the next batch is also impacted by other callbacks. If you
have callbacks that are particularly expensive to run, for example because they actually have their own model
training, the results of the BatchTimeCallback may be misleading.

10.2.2 Usage example

from health_ml.utils import BatchTimeCallback
from pytorch_lightning import Trainer

batchtime = BatchTimeCallback(max_batch_load_time_seconds=0.5)
trainer = Trainer(callbacks=[batchtime])

This would produce output like this:

Epoch 18 training: Loaded the first minibatch of data in 0.00 sec.
Epoch 18 validation: Loaded the first minibatch of data in 0.00 sec.
Epoch 18 training took 0.02sec, of which waiting for data took 0.01 sec total.
Epoch 18 validation took 0.00sec, of which waiting for data took 0.00 sec total.

36 Chapter 10. Performance Diagnostics

CHAPTER

ELEVEN

NOTES FOR DEVELOPERS

11.1 Creating a Conda environment

To create a separate Conda environment with all packages that hi-ml requires for running and testing, use the provided
environment.yml file. Create a Conda environment called himl from that via

conda env create --file environment.yml
conda activate himl

11.2 Installing pyright

We are using static typechecking for our code via mypy and pyright. The latter requires a separate installation outside
the Conda environment. For WSL, these are the required steps (see also here):

curl -o- https://raw.githubusercontent.com/nvm-sh/nvm/v0.38.0/install.sh | bash
nvm install node
npm install -g pyright

11.3 Using specific versions hi-ml in your Python environments

If you’d like to test specific changes to the hi-ml package in your code, you can use two different routes:

• You can clone the hi-ml repository on your machine, and use hi-ml in your Python environment via a local
package install:

pip install -e <your_git_folder>/hi-ml

• You can consume an early version of the package from test.pypi.org via pip:

pip install --extra-index-url https://test.pypi.org/simple/ hi-ml==0.1.0.post165

• If you are using Conda, you can add an additional parameter for pip into the Conda environment.yml file like
this:

name: foo
dependencies:
- pip=20.1.1

(continues on next page)

37

https://docs.microsoft.com/en-us/windows/dev-environment/javascript/nodejs-on-wsl

hi-ml

(continued from previous page)

- python=3.7.3
- pip:

- --extra-index-url https://test.pypi.org/simple/
- hi-ml==0.1.0.post165

11.4 Common things to do

The repository contains a makefile with definitions for common operations.

• make check: Run flake8 and mypy on the repository.

• make test: Run flake8 and mypy on the repository, then all tests via pytest

• make pip: Install all packages for running and testing in the current interpreter.

• make conda: Update the hi-ml Conda environment and activate it

11.5 Building documentation

To build the sphinx documentation, you must have sphinx and related packages installed (see build_requirements.
txt in the repository root). Then run:

cd docs
make html

This will build all your documentation in docs/build/html.

11.6 Setting up your AzureML workspace

• In the browser, navigate to the AzureML workspace that you want to use for running your tests.

• In the top right section, there will be a dropdown menu showing the name of your AzureML workspace. Expand
that.

• In the panel, there is a link “Download config file”. Click that.

• This will download a file config.json. Move that file to the root folder of your hi-ml repository. The file
name is already present in .gitignore, and will hence not be checked in.

11.7 Creating and Deleting Docker Environments in AzureML

• Passing a docker_base_image into submit_to_azure_if_needed causes a new image to be built and reg-
istered in your workspace (see docs for more information).

• To remove an environment use the az ml environment delete function in the AzureML CLI (note that all the
parameters need to be set, none are optional).

38 Chapter 11. Notes for developers

https://docs.microsoft.com/en-us/azure/machine-learning/how-to-use-environments
https://docs.microsoft.com/en-us/cli/azure/ml/environment?view=azure-cli-latest#az_ml_environment_delete

hi-ml

11.8 Testing

For all of the tests to work locally you will need to cache your AzureML credentials. One simple way to do this is to run
the example in src/health/azure/examples (i.e. run python elevate_this.py --message='Hello World'
--azureml or make example) after editing elevate_this.py to reference your compute cluster.

When running the tests locally, they can either be run against the source directly, or the source built into a package.

• To run the tests against the source directly in the local src folder, ensure that there is no wheel in the dist folder
(for example by running make clean). If a wheel is not detected, then the local src folder will be copied into
the temporary test folder as part of the test process.

• To run the tests against the source as a package, build it with make build. This will build the local src folder
into a new wheel in the dist folder. This wheel will be detected and passed to AzureML as a private package
as part of the test process.

11.9 Creating a New Release

To create a new package release, follow these steps:

• Double-check that CHANGELOG.md is up-to-date: It should contain a section for the next package version with
subsections Added/Changed/. . .

• On the repository’s github page, click on “Releases”, then “Draft a new release”

• In the “Draft a new release” page, click “Choose a tag”. In the text box, enter a (new) tag name that has the desired
version number, plus a “v” prefix. For example, to create package version 0.12.17, create a tag v0.12.17. Then
choose “+ Create new tag” below the text box.

• Enter a “Release title” that highlights the main feature(s) of this new package version.

• Click “Auto-generate release notes” to pull in the titles of the Pull Requests since the last release.

• Before the auto-generated “What’s changed” section, add a few sentences that summarize what’s new.

• Click “Publish release”

11.8. Testing 39

hi-ml

40 Chapter 11. Notes for developers

CHAPTER

TWELVE

CONTRIBUTING TO THIS TOOLBOX

We welcome all contributions that help us achieve our aim of speeding up ML/AI research in health and life sciences.
Examples of contributions are

• Data loaders for specific health & life sciences data

• Network architectures and components for deep learning models

• Tools to analyze and/or visualize data

All contributions to the toolbox need to come with unit tests, and will be reviewed when a Pull Request (PR) is started.
If in doubt, reach out to the core hi-ml team before starting your work.

Please look through the existing folder structure to find a good home for your contribution.

12.1 Submitting a Pull Request

If you’d like to submit a PR to the codebase, please ensure you:

• Include a brief description

• Link to an issue, if relevant

• Write unit tests for the code - see below for details.

• Add appropriate documentation for any new code that you introduce

• Ensure that you modified CHANGELOG.md and described your PR there.

• Only publish your PR for review once you have a build that is passing. You can make use of the “Create as Draft”
feature of GitHub.

12.2 Code style

• We use flake8 as a linter, and mypy and pyright for static typechecking. Both tools run as part of the PR build,
and must run without errors for a contribution to be accepted. mypy requires that all functions and methods carry
type annotations, see mypy documentation

• We highly recommend to run all those tools before pushing the latest changes to a PR. If you have make installed,
you can run both tools in one go via make check (from the repository root folder)

41

https://mypy.readthedocs.io/en/latest/getting_started.html#function-signatures-and-dynamic-vs-static-typing

hi-ml

12.3 Unit testing

• DO write unit tests for each new function or class that you add.

• DO extend unit tests for existing functions or classes if you change their core behaviour.

• DO try your best to write unit tests that are fast. Very often, this can be done by reducing data size to a minimum.
Also, it is helpful to avoid long-running integration tests, but try to test at the level of the smallest involved
function.

• DO ensure that your tests are designed in a way that they can pass on the local machine, even if they are relying
on specific cloud features. If required, use unittest.mock to simulate the cloud features, and hence enable the
tests to run successfully on your local machine.

• DO run all unit tests on your dev machine before submitting your changes. The test suite is designed to pass
completely also outside of cloud builds.

• DO NOT rely only on the test builds in the cloud (i.e., run test locally before submitting). Cloud builds trigger
AzureML runs on GPU machines that have a far higher CO2 footprint than your dev machine.

• When fixing a bug, the suggested workflow is to first write a unit test that shows the invalid behaviour, and only
then start to code up the fix.

12.4 Correct Sphinx Documentation

Common mistakes when writing docstrings:

• There must be a separating line between a function description and the documentation for its parameters.

• In multi-line parameter descriptions, continuations on the next line must be indented.

• Sphinx will merge the class description and the arguments of the constructor __init__. Hence, there is no need
to write any text in the constructor, only the classes’ parameters.

• Use >>> to include code snippets. PyCharm will run intellisense on those to make authoring easier.

• To generate the Sphinx documentation on your dev machine, run make html in the ./docs folder, and then
open ./docs/build/html/index.html

Example:

class Foo:
"""
This is the class description.

The following block will be pretty-printed by Sphinx. Note the space between >>> and␣
→˓the code!

Usage example:
>>> from module import Foo
>>> foo = Foo(bar=1.23)

"""

ANY_ATTRIBUTE = "what_ever."
"""Document class attributes after the attribute."""

def __init__(self, bar: float = 0.5) -> None:
(continues on next page)

42 Chapter 12. Contributing to this toolbox

hi-ml

(continued from previous page)

"""
:param bar: This is a description for the constructor argument.

Long descriptions should be indented.
"""
self.bar = bar

def method(self, arg: int) -> None:
"""
Method description, followed by an empty line.

:param arg: This is a description for the method argument.
Long descriptions should be indented.

"""

12.4. Correct Sphinx Documentation 43

hi-ml

44 Chapter 12. Contributing to this toolbox

CHAPTER

THIRTEEN

LOADING IMAGES

There are many libraries available that can load png images. Simple examples were made using most of them and time
of execution was compared. The goal was to load a png file, either RGB or greyscale, into a torch.Tensor.

The tensor specification was:

• shape [3, Height, Width] (for RGB images, in RGB order) or [1, Height, Width] (for greyscale images);

• dtype float32;

• scaled to between 0.0 and 1.0.

13.1 matplotlib

Two methods using matplotlib were compared. The first manipulates the numpy array from the image read before
creating the torch tensor, the second uses torchvision to do the transformation.

from pathlib import Path

import matplotlib.image as mpimg
import numpy as np
import torch
import torchvision.transforms.functional as TF

def read_image_matplotlib(input_filename: Path) -> torch.Tensor:
"""
Read an image file with matplotlib and return a torch.Tensor.

:param input_filename: Source image file path.
:return: torch.Tensor of shape (C, H, W).
"""
https://matplotlib.org/stable/api/_as_gen/matplotlib.pyplot.imread.html
numpy_array is a numpy.array of shape: (H, W), (H, W, 3), or (H, W, 4)
where H = height, W = width
numpy_array = mpimg.imread(input_filename)
if len(numpy_array.shape) == 2:

if loaded a greyscale image, then it is of shape (H, W) so add in an extra axis
numpy_array = np.expand_dims(numpy_array, 2)

transpose to shape (C, H, W)
numpy_array = np.transpose(numpy_array, (2, 0, 1))
torch_tensor = torch.from_numpy(numpy_array)
return torch_tensor

(continues on next page)

45

https://matplotlib.org/

hi-ml

(continued from previous page)

def read_image_matplotlib2(input_filename: Path) -> torch.Tensor:
"""
Read an image file with matplotlib and return a torch.Tensor.

:param input_filename: Source image file path.
:return: torch.Tensor of shape (C, H, W).
"""
https://matplotlib.org/stable/api/_as_gen/matplotlib.pyplot.imread.html
numpy_array is a numpy.array of shape: (H, W), (H, W, 3), or (H, W, 4)
where H = height, W = width
numpy_array = mpimg.imread(input_filename)
torch_tensor = TF.to_tensor(numpy_array)
return torch_tensor

13.2 OpenCV

Two methods using the Python interface to OpenCV were compared. The first manipulates the numpy array from the
image read before creating the torch tensor, the second uses torchvision to do the transformation. Note that OpenCV
loads images in BGR format, so they need to be transformed.

from pathlib import Path

import cv2
import numpy as np
import torch
import torchvision.transforms.functional as TF

def read_image_opencv(input_filename: Path) -> torch.Tensor:
"""
Read an image file with OpenCV and return a torch.Tensor.

:param input_filename: Source image file path.
:return: torch.Tensor of shape (C, H, W).
"""
https://docs.opencv.org/4.5.3/d4/da8/group__imgcodecs.html

→˓#ga288b8b3da0892bd651fce07b3bbd3a56
numpy_array is a numpy.ndarray, in BGR format.
numpy_array = cv2.imread(str(input_filename))
numpy_array = cv2.cvtColor(numpy_array, cv2.COLOR_BGR2RGB)
is_greyscale = False not in \

((numpy_array[:, :, 0] == numpy_array[:, :, 1]) == (numpy_array[:, :, 1] ==␣
→˓numpy_array[:, :, 2]))
if is_greyscale:

numpy_array = numpy_array[:, :, 0]
if len(numpy_array.shape) == 2:

if loaded a greyscale image, then it is of shape (H, W) so add in an extra axis
numpy_array = np.expand_dims(numpy_array, 2)

numpy_array = np.float32(numpy_array) / 255.0
(continues on next page)

46 Chapter 13. Loading Images

https://opencv.org/

hi-ml

(continued from previous page)

transpose to shape (C, H, W)
numpy_array = np.transpose(numpy_array, (2, 0, 1))
torch_tensor = torch.from_numpy(numpy_array)
return torch_tensor

def read_image_opencv2(input_filename: Path) -> torch.Tensor:
"""
Read an image file with OpenCV and return a torch.Tensor.

:param input_filename: Source image file path.
:return: torch.Tensor of shape (C, H, W).
"""
https://docs.opencv.org/4.5.3/d4/da8/group__imgcodecs.html

→˓#ga288b8b3da0892bd651fce07b3bbd3a56
numpy_array is a numpy.ndarray, in BGR format.
numpy_array = cv2.imread(str(input_filename))
numpy_array = cv2.cvtColor(numpy_array, cv2.COLOR_BGR2RGB)
is_greyscale = False not in \

((numpy_array[:, :, 0] == numpy_array[:, :, 1]) == (numpy_array[:, :, 1] ==␣
→˓numpy_array[:, :, 2]))
if is_greyscale:

numpy_array = numpy_array[:, :, 0]
torch_tensor = TF.to_tensor(numpy_array)
return torch_tensor

13.3 Pillow

Pillow is one of the easiest libraries to use because torchvision has a function to convert directly from Pillow images.

from pathlib import Path

from PIL import Image
import torch
import torchvision.transforms.functional as TF

def read_image_pillow(input_filename: Path) -> torch.Tensor:
"""
Read an image file with pillow and return a torch.Tensor.

:param input_filename: Source image file path.
:return: torch.Tensor of shape (C, H, W).
"""
pil_image = Image.open(input_filename)
torch_tensor = TF.to_tensor(pil_image)
return torch_tensor

13.3. Pillow 47

https://python-pillow.org/

hi-ml

13.4 SciPy

SciPy is also easy to use because it loads images into a numpy array of the expected shape so that it can easily be
transformed into a torch tensor.

from pathlib import Path

import imageio
import torch
import torchvision.transforms.functional as TF

def read_image_scipy(input_filename: Path) -> torch.Tensor:
"""
Read an image file with scipy and return a torch.Tensor.

:param input_filename: Source image file path.
:return: torch.Tensor of shape (C, H, W).
"""
numpy_array = imageio.imread(input_filename)
torch_tensor = TF.to_tensor(numpy_array)
return torch_tensor

13.5 SimpleITK

SimpleITK requires a two step process to load an image and extract the data as a numpy array, but it is then in the
correct format.

from pathlib import Path

import SimpleITK as sitk
import torch
import torchvision.transforms.functional as TF

def read_image_sitk(input_filename: Path) -> torch.Tensor:
"""
Read an image file with SimpleITK and return a torch.Tensor.

:param input_filename: Source image file path.
:return: torch.Tensor of shape (C, H, W).
"""
itk_image = sitk.ReadImage(str(input_filename))
numpy_array = sitk.GetArrayFromImage(itk_image)
torch_tensor = TF.to_tensor(numpy_array)
return torch_tensor

48 Chapter 13. Loading Images

https://scipy.org/
https://simpleitk.org/

hi-ml

13.6 scikit-image

scikit-image is also very simple to use, since it loads the image as a numpy array in the correct format.

from pathlib import Path

from skimage import io
import torch
import torchvision.transforms.functional as TF

def read_image_skimage(input_filename: Path) -> torch.Tensor:
"""
Read an image file with scikit-image and return a torch.Tensor.

:param input_filename: Source image file path.
:return: torch.Tensor of shape (C, H, W).
"""
numpy_array = io.imread(input_filename)
torch_tensor = TF.to_tensor(numpy_array)
return torch_tensor

13.7 numpy

For comparison, the png image data was saved in the numpy native data format and then reloaded.

from pathlib import Path

import numpy as np
import torch
import torchvision.transforms.functional as TF

def read_image_numpy(input_filename: Path) -> torch.Tensor:
"""
Read an Numpy file with Torch and return a torch.Tensor.

:param input_filename: Source image file path.
:return: torch.Tensor of shape (C, H, W).
"""
numpy_array = np.load(input_filename)
torch_tensor = torch.from_numpy(numpy_array)
return torch_tensor

13.6. scikit-image 49

https://scikit-image.org/

hi-ml

13.8 torch

Again, for comparison, the png image data was saved in the torch tensor native data format and then reloaded.

from pathlib import Path

import torch

def read_image_torch2(input_filename: Path) -> torch.Tensor:
"""
Read a Torch file with Torch and return a torch.Tensor.

:param input_filename: Source image file path.
:return: torch.Tensor of shape (C, H, W).
"""
torch_tensor = torch.load(input_filename)
return torch_tensor

50 Chapter 13. Loading Images

CHAPTER

FOURTEEN

RESULTS

All the above methods were ran against 122 small test images, repeated 10 times. So in total there were 1220 calls to
each of the functions.

14.1 RGB Images

For 61 RGB images of size 224 x 224 pixels and 61 of size 180 x 224 pixels, repeated 10 times, there are the following
timings:

Function Total time (s)
read_image_matplotlib 9.81336
read_image_matplotlib2 9.96016
read_image_opencv 12.4301
read_image_opencv2 12.6227
read_image_pillow 16.2288
read_image_scipy 17.9958
read_image_sitk 63.6669
read_image_skimage 18.273
read_image_numpy 7.29741
read_image_torch2 7.07304

14.2 Greyscale Images

Similarly, with greyscale versions of the RGB images:

Function Total time (s)
read_image_matplotlib 8.32523
read_image_matplotlib2 8.26399
read_image_opencv 11.6838
read_image_opencv2 11.7935
read_image_pillow 15.7406
read_image_scipy 17.9061
read_image_sitk 71.8732
read_image_skimage 18.0698
read_image_numpy 7.94197
read_image_torch2 7.73153

51

hi-ml

The recommendation therefore is to use matplotlib mpimg.imread to load the image and TF.to_tensor to transform
the numpy array to a torch tensor. This is almost as fast as loading the data directly in a native numpy or torch format.

52 Chapter 14. Results

CHAPTER

FIFTEEN

WHOLE SLIDE IMAGES

Computational Pathology works with image files that can be very large in size, up to many GB. These files may be
too large to load entirely into memory at once, or at least too large to act as training data. Instead they may be split
into multiple tiles of a much smaller size, e.g. 224x224 pixels before being used for training. There are two popular
libraries used for handling this type of image:

• OpenSlide

• cuCIM

but they both come with trade offs and complications.

In development there is also tifffile, but this is untested.

15.1 OpenSlide

There is a Python interface for OpenSlide at openslide-python, but this first requires the installation of the OpenSlide
library itself. This can be done on Ubuntu with:

apt-get install openslide-tools

On Windows follow the instructions here and make sure that the install directory is added to the system path.

Once the shared library/dlls are installed, install the Python interface with:

pip install openslide-python

15.2 cuCIM

cuCIM is much easier to install, it can be done entirely with the Python package: cucim. However, there are the
following caveats:

• It requires a GPU, with NVIDIA driver 450.36+

• It requires CUDA 11.0+

• It supports only a subset of tiff image files.

The suitable AzureML base Docker images are therefore the ones containing cuda11, and the compute instance must
contain a GPU.

53

https://openslide.org/
https://github.com/rapidsai/cucim
https://github.com/cgohlke/tifffile/
https://pypi.org/project/openslide-python/
https://openslide.org/docs/windows/
https://pypi.org/project/cucim/

hi-ml

15.3 Performance

An exploratory set of scripts are at slide_image_loading for comparing loading images with OpenSlide or cuCIM, and
performing tiling using both libraries.

15.3.1 Loading and saving at lowest resolution

Four test tiff files are used:

• a 44.5 MB file with level dimensions: ((27648, 29440), (6912, 7360), (1728, 1840))

• a 19.9 MB file with level dimensions: ((5888, 25344), (1472, 6336), (368, 1584))

• a 5.5 MB file with level dimensions: ((27648, 29440), (6912, 7360), (1728, 1840)), but acting as a mask

• a 2.1 MB file with level dimensions: ((5888, 25344), (1472, 6336), (368, 1584)), but acting as a mask

For OpenSlide the following code:

with OpenSlide(str(input_file)) as img:
count = img.level_count
dimensions = img.level_dimensions

print(f"level_count: {count}")
print(f"dimensions: {dimensions}")

for k, v in img.properties.items():
print(k, v)

region = img.read_region(location=(0, 0),
level=count-1,
size=dimensions[count-1])

region.save(output_file)

took an average of 29ms to open the file, 88ms to read the region, and 243ms to save the region as a png.

For cuCIM the following code:

img = cucim.CuImage(str(input_file))

count = img.resolutions['level_count']
dimensions = img.resolutions['level_dimensions']

print(f"level_count: {count}")
print(f"level_dimensions: {dimensions}")

print(img.metadata)

region = img.read_region(location=(0, 0),
size=dimensions[count-1],
level=count-1)

np_img_arr = np.asarray(region)
img2 = Image.fromarray(np_img_arr)
img2.save(output_file)

54 Chapter 15. Whole Slide Images

hi-ml

took an average of 369ms to open the file, 7ms to read the region and 197ms to save the region as a png, but note that
it failed to handle the mask images.

15.3.2 Loading and saving as tiles at the medium resolution

Test code created tiles of size 224x224 pilfes, loaded the mask images, and used occupancy levels to decide which tiles
to create and save from level 1 - the middle resolution. This was profiled against both images, as above.

For cuCIM the total time was 4.7s, 2.48s to retain the tiles as a Numpy stack but not save them as pngs. cuCIM has the
option of cacheing images, but is actually made performance slightly worse, possibly because the natural tile sizes in
the original tiffs were larger than the tile sizes.

For OpenSlide the comparable total times were 5.7s, and 3.26s.

15.3. Performance 55

hi-ml

56 Chapter 15. Whole Slide Images

CHAPTER

SIXTEEN

HEALTH_AZURE PACKAGE

16.1 Functions

create_run_configuration(workspace, . . . [, . . .]) Creates an AzureML run configuration, that contains in-
formation about environment, multi node execution, and
Docker.

create_script_run([snapshot_root_directory, . . .]) Creates an AzureML ScriptRunConfig object, that holds
the information about the snapshot, the entry script, and
its arguments.

download_files_from_run_id(run_id, out-
put_folder)

For a given Azure ML run id, first retrieve the Run, and
then download all files, which optionally start with a
given prefix.

download_checkpoints_from_run_id(run_id, . . .) Given an Azure ML run id, download all files from a
given checkpoint directory within that run, to the path
specified by output_path.

download_from_datastore(datastore_name, . . .) Download file(s) from an Azure ML Datastore that are
registered within a given Workspace.

fetch_run(workspace, run_recovery_id) Finds an existing run in an experiment, based on a re-
covery ID that contains the experiment ID and the actual
RunId.

get_most_recent_run(run_recovery_file,
workspace)

Gets the name of the most recently executed AzureML
run, instantiates that Run object and returns it.

get_workspace([aml_workspace, . . .]) Retrieve an Azure ML Workspace from one of several
places:

is_running_in_azure_ml([aml_run]) Returns True if the given run is inside of an AzureML
machine, or False if it is on a machine outside AzureML.

set_environment_variables_for_multi_node() Sets the environment variables that PyTorch Lightning
needs for multi-node training.

split_recovery_id(id_str) Splits a run ID into the experiment name and the actual
run.

submit_run(workspace, experiment_name, . . .) Starts an AzureML run on a given workspace, via the
script_run_config.

submit_to_azure_if_needed([. . .]) Submit a folder to Azure, if needed and run it.
torch_barrier() This is a barrier to use in distributed jobs.
upload_to_datastore(datastore_name, . . . [, . . .]) Upload a folder to an Azure ML Datastore that is regis-

tered within a given Workspace.
create_crossval_hyperdrive_config(num_splits) Creates an Azure ML HyperDriveConfig object for run-

ning cross validation.
continues on next page

57

hi-ml

Table 1 – continued from previous page
aggregate_hyperdrive_metrics(run_id, . . . [, . . .]) For a given HyperDrive run id, retrieves the metrics from

each of its children and then aggregates it.

16.1.1 create_run_configuration

health_azure.create_run_configuration(workspace, compute_cluster_name,
conda_environment_file=None, aml_environment_name='',
environment_variables=None, pip_extra_index_url='',
private_pip_wheel_path=None, docker_base_image='',
docker_shm_size='', num_nodes=1, max_run_duration='',
input_datasets=None, output_datasets=None)

Creates an AzureML run configuration, that contains information about environment, multi node execution, and
Docker.

Parameters

• workspace (Workspace) – The AzureML Workspace to use.

• aml_environment_name (str) – The name of an AzureML environment that should
be used to submit the script. If not provided, an environment will be created from
the arguments to this function (conda_environment_file, pip_extra_index_url, environ-
ment_variables, docker_base_image)

• max_run_duration (str) – The maximum runtime that is allowed for this job in AzureML.
This is given as a floating point number with a string suffix s, m, h, d for seconds, minutes,
hours, day. Examples: ‘3.5h’, ‘2d’

• compute_cluster_name (str) – The name of the AzureML cluster that should run the job.
This can be a cluster with CPU or GPU machines.

• conda_environment_file (Optional[Path]) – The conda configuration file that de-
scribes which packages are necessary for your script to run.

• environment_variables (Optional[Dict[str, str]]) – The environment variables that
should be set when running in AzureML.

• docker_base_image (str) – The Docker base image that should be used when creating a
new Docker image.

• docker_shm_size (str) – The Docker shared memory size that should be used when cre-
ating a new Docker image.

• pip_extra_index_url (str) – If provided, use this PIP package index to find additional
packages when building the Docker image.

• private_pip_wheel_path (Optional[Path]) – If provided, add this wheel as a private
package to the AzureML workspace.

• conda_environment_file – The file that contains the Conda environment definition.

• input_datasets (Optional[List[DatasetConfig]]) – The script will consume all data
in folder in blob storage as the input. The folder must exist in blob storage, in the location
that you gave when creating the datastore. Once the script has run, it will also register the
data in this folder as an AzureML dataset.

• output_datasets (Optional[List[DatasetConfig]]) – The script will create a tempo-
rary folder when running in AzureML, and while the job writes data to that folder, upload it
to blob storage, in the data store.

58 Chapter 16. health_azure Package

hi-ml

• num_nodes (int) – The number of nodes to use in distributed training on AzureML.

Return type RunConfiguration

Returns

16.1.2 create_script_run

health_azure.create_script_run(snapshot_root_directory=None, entry_script=None, script_params=None)
Creates an AzureML ScriptRunConfig object, that holds the information about the snapshot, the entry script, and
its arguments.

Parameters

• entry_script (Union[Path, str, None]) – The script that should be run in AzureML.

• snapshot_root_directory (Optional[Path]) – The directory that contains all code that
should be packaged and sent to AzureML. All Python code that the script uses must be copied
over.

• script_params (Optional[List[str]]) – A list of parameter to pass on to the script as it
runs in AzureML. If empty (or None, the default) these will be copied over from sys.argv,
omitting the –azureml flag.

Return type ScriptRunConfig

Returns

16.1.3 download_files_from_run_id

health_azure.download_files_from_run_id(run_id, output_folder, prefix='', workspace=None,
workspace_config_path=None, validate_checksum=False)

For a given Azure ML run id, first retrieve the Run, and then download all files, which optionally start with a
given prefix. E.g. if the Run creates a folder called “outputs”, which you wish to download all files from, specify
prefix=”outputs”. To download all files associated with the run, leave prefix empty.

If not running inside AML and neither a workspace nor the config file are provided, the code will try to locate
a config.json file in any of the parent folders of the current working directory. If that succeeds, that config.json
file will be used to instantiate the workspace.

If function is called in a distributed PyTorch training script, the files will only be downloaded once per node (i.e,
all process where is_local_rank_zero() == True). All processes will exit this function once all downloads are
completed.

Parameters

• run_id (str) – The id of the Azure ML Run

• output_folder (Path) – Local directory to which the Run files should be downloaded.

• prefix (str) – Optional prefix to filter Run files by

• workspace (Optional[Workspace]) – Optional Azure ML Workspace object

• workspace_config_path (Optional[Path]) – Optional path to settings for Azure ML
Workspace

• validate_checksum (bool) – Whether to validate the content from HTTP response

Return type None

16.1. Functions 59

hi-ml

16.1.4 download_checkpoints_from_run_id

health_azure.download_checkpoints_from_run_id(run_id, checkpoint_path_or_folder, output_folder,
aml_workspace=None, workspace_config_path=None)

Given an Azure ML run id, download all files from a given checkpoint directory within that run, to the path spec-
ified by output_path. If running in AML, will take the current workspace. Otherwise, if neither aml_workspace
nor workspace_config_path are provided, will try to locate a config.json file in any of the parent folders of the
current working directory.

Parameters

• run_id (str) – The id of the run to download checkpoints from

• checkpoint_path_or_folder (str) – The path to the either a single checkpoint file, or a
directory of checkpoints within the run files. If a folder is provided, all files within it will be
downloaded.

• output_folder (Path) – The path to which the checkpoints should be stored

• aml_workspace (Optional[Workspace]) – Optional AML workspace object

• workspace_config_path (Optional[Path]) – Optional workspace config file

Return type None

16.1.5 download_from_datastore

health_azure.download_from_datastore(datastore_name, file_prefix, output_folder, aml_workspace=None,
workspace_config_path=None, overwrite=False,
show_progress=False)

Download file(s) from an Azure ML Datastore that are registered within a given Workspace. The path to the
file(s) to be downloaded, relative to the datastore <datastore_name>, is specified by the parameter “prefix”.
Azure will search for files within the Datastore whose paths begin with this string. If you wish to download
multiple files from the same folder, set <prefix> equal to that folder’s path within the Datastore. If you wish to
download a single file, include both the path to the folder it resides in, as well as the filename itself. If the relevant
file(s) are found, they will be downloaded to the folder specified by <output_folder>. If this directory does not
already exist, it will be created. E.g. if your datastore contains the paths [“foo/bar/1.txt”, “foo/bar/2.txt”] and
you call this function with file_prefix=”foo/bar” and output_folder=”outputs”, you would end up with the files
[“outputs/foo/bar/1.txt”, “outputs/foo/bar/2.txt”]

If not running inside AML and neither a workspace nor the config file are provided, the code will try to locate
a config.json file in any of the parent folders of the current working directory. If that succeeds, that config.json
file will be used to instantiate the workspace.

Parameters

• datastore_name (str) – The name of the Datastore containing the blob to be downloaded.
This Datastore itself must be an instance of an AzureBlobDatastore.

• file_prefix (str) – The prefix to the blob to be downloaded

• output_folder (Path) – The directory into which the blob should be downloaded

• aml_workspace (Optional[Workspace]) – Optional Azure ML Workspace object

• workspace_config_path (Optional[Path]) – Optional path to settings for Azure ML
Workspace

• overwrite (bool) – If True, will overwrite any existing file at the same remote path. If
False, will skip any duplicate file.

60 Chapter 16. health_azure Package

hi-ml

• show_progress (bool) – If True, will show the progress of the file download

Return type None

16.1.6 fetch_run

health_azure.fetch_run(workspace, run_recovery_id)
Finds an existing run in an experiment, based on a recovery ID that contains the experiment ID and the actual
RunId. The run can be specified either in the experiment_name:run_id format, or just the run_id.

Parameters

• workspace (Workspace) – the configured AzureML workspace to search for the experi-
ment.

• run_recovery_id (str) – The Run to find. Either in the full recovery ID format, experi-
ment_name:run_id or just the run_id

Return type Run

Returns The AzureML run.

16.1.7 get_most_recent_run

health_azure.get_most_recent_run(run_recovery_file, workspace)
Gets the name of the most recently executed AzureML run, instantiates that Run object and returns it.

Parameters

• run_recovery_file (Path) – The path of the run recovery file

• workspace (Workspace) – Azure ML Workspace

Return type Run

Returns The Run

16.1.8 get_workspace

health_azure.get_workspace(aml_workspace=None, workspace_config_path=None)

Retrieve an Azure ML Workspace from one of several places:

1. If the function has been called during an AML run (i.e. on an Azure agent), returns the associated
workspace

2. If a Workspace object has been provided by the user, return that

3. If a path to a Workspace config file has been provided, load the workspace according to that.

If not running inside AML and neither a workspace nor the config file are provided, the code will try to locate
a config.json file in any of the parent folders of the current working directory. If that succeeds, that config.json
file will be used to instantiate the workspace.

Parameters

• aml_workspace (Optional[Workspace]) – If provided this is returned as the AzureML
Workspace.

16.1. Functions 61

hi-ml

• workspace_config_path (Optional[Path]) – If not provided with an AzureML
Workspace, then load one given the information in this config

Return type Workspace

Returns An AzureML workspace.

16.1.9 is_running_in_azure_ml

health_azure.is_running_in_azure_ml(aml_run=<azureml.core.run._OfflineRun object>)
Returns True if the given run is inside of an AzureML machine, or False if it is on a machine outside AzureML.
When called without arguments, this functions returns True if the present code is running in AzureML. Note
that in runs with “compute_target=’local’” this function will also return True. Such runs execute outside of
AzureML, but are able to log all their metrics, etc to an AzureML run.

Parameters aml_run (Run) – The run to check. If omitted, use the default run in RUN_CONTEXT

Return type bool

Returns True if the given run is inside of an AzureML machine, or False if it is a machine outside
AzureML.

16.1.10 set_environment_variables_for_multi_node

health_azure.set_environment_variables_for_multi_node()
Sets the environment variables that PyTorch Lightning needs for multi-node training.

Return type None

16.1.11 split_recovery_id

health_azure.split_recovery_id(id_str)
Splits a run ID into the experiment name and the actual run. The argument can be in the format ‘experi-
ment_name:run_id’, or just a run ID like user_branch_abcde12_123. In the latter case, everything before the
last two alphanumeric parts is assumed to be the experiment name.

Parameters id_str (str) – The string run ID.

Return type Tuple[str, str]

Returns experiment name and run name

16.1.12 submit_run

health_azure.submit_run(workspace, experiment_name, script_run_config, tags=None,
wait_for_completion=False, wait_for_completion_show_output=False)

Starts an AzureML run on a given workspace, via the script_run_config.

Parameters

• workspace (Workspace) – The AzureML workspace to use.

• experiment_name (str) – The name of the experiment that will be used or created. If the
experiment name contains characters that are not valid in Azure, those will be removed.

• script_run_config (Union[ScriptRunConfig, HyperDriveConfig]) – The settings
that describe which script should be run.

62 Chapter 16. health_azure Package

hi-ml

• tags (Optional[Dict[str, str]]) – A dictionary of string key/value pairs, that will be
added as metadata to the run. If set to None, a default metadata field will be added that only
contains the commandline arguments that started the run.

• wait_for_completion (bool) – If False (the default) return after the run is submitted to
AzureML, otherwise wait for the completion of this run (if True).

• wait_for_completion_show_output (bool) – If wait_for_completion is True this pa-
rameter indicates whether to show the run output on sys.stdout.

Return type Run

Returns An AzureML Run object.

16.1.13 submit_to_azure_if_needed

health_azure.submit_to_azure_if_needed(compute_cluster_name='', entry_script=None,
aml_workspace=None, workspace_config_file=None,
snapshot_root_directory=None, script_params=None,
conda_environment_file=None, aml_environment_name='',
experiment_name=None, environment_variables=None,
pip_extra_index_url='', private_pip_wheel_path=None,
docker_base_image='', docker_shm_size='',
ignored_folders=None, default_datastore='',
input_datasets=None, output_datasets=None, num_nodes=1,
wait_for_completion=False,
wait_for_completion_show_output=False, max_run_duration='',
submit_to_azureml=None, tags=None, after_submission=None,
hyperdrive_config=None)

Submit a folder to Azure, if needed and run it. Use the commandline flag –azureml to submit to AzureML, and
leave it out to run locally.

Parameters

• after_submission (Optional[Callable[[Run], None]]) – A function that will be called
directly after submitting the job to AzureML. The only argument to this function is the run
that was just submitted. Use this to, for example, add additional tags or print information
about the run.

• tags (Optional[Dict[str, str]]) – A dictionary of string key/value pairs, that will be
added as metadata to the run. If set to None, a default metadata field will be added that only
contains the commandline arguments that started the run.

• aml_environment_name (str) – The name of an AzureML environment that should be
used to submit the script. If not provided, an environment will be created from the arguments
to this function.

• max_run_duration (str) – The maximum runtime that is allowed for this job in AzureML.
This is given as a floating point number with a string suffix s, m, h, d for seconds, minutes,
hours, day. Examples: ‘3.5h’, ‘2d’

• experiment_name (Optional[str]) – The name of the AzureML experiment in which the
run should be submitted. If omitted, this is created based on the name of the current script.

• entry_script (Union[Path, str, None]) – The script that should be run in AzureML

• compute_cluster_name (str) – The name of the AzureML cluster that should run the job.
This can be a cluster with CPU or GPU machines.

16.1. Functions 63

hi-ml

• conda_environment_file (Union[Path, str, None]) – The conda configuration file that
describes which packages are necessary for your script to run.

• aml_workspace (Optional[Workspace]) – There are two optional parameters used to
glean an existing AzureML Workspace. The simplest is to pass it in as a parameter.

• workspace_config_file (Union[Path, str, None]) – The 2nd option is to specify the
path to the config.json file downloaded from the Azure portal from which we can retrieve the
existing Workspace.

• snapshot_root_directory (Union[Path, str, None]) – The directory that contains all
code that should be packaged and sent to AzureML. All Python code that the script uses must
be copied over.

• ignored_folders (Optional[List[Union[Path, str]]]) – A list of folders to exclude
from the snapshot when copying it to AzureML.

• script_params (Optional[List[str]]) – A list of parameter to pass on to the script as it
runs in AzureML. If empty (or None, the default) these will be copied over from sys.argv,
omitting the –azureml flag.

• environment_variables (Optional[Dict[str, str]]) – The environment variables that
should be set when running in AzureML.

• docker_base_image (str) – The Docker base image that should be used when creating a
new Docker image.

• docker_shm_size (str) – The Docker shared memory size that should be used when cre-
ating a new Docker image.

• pip_extra_index_url (str) – If provided, use this PIP package index to find additional
packages when building the Docker image.

• private_pip_wheel_path (Union[Path, str, None]) – If provided, add this wheel as a
private package to the AzureML workspace.

• default_datastore (str) – The data store in your AzureML workspace, that points to
your training data in blob storage. This is described in more detail in the README.

• input_datasets (Optional[List[Union[str, DatasetConfig]]]) – The script will con-
sume all data in folder in blob storage as the input. The folder must exist in blob storage, in
the location that you gave when creating the datastore. Once the script has run, it will also
register the data in this folder as an AzureML dataset.

• output_datasets (Optional[List[Union[str, DatasetConfig]]]) – The script will
create a temporary folder when running in AzureML, and while the job writes data to that
folder, upload it to blob storage, in the data store.

• num_nodes (int) – The number of nodes to use in distributed training on AzureML.

• wait_for_completion (bool) – If False (the default) return after the run is submitted to
AzureML, otherwise wait for the completion of this run (if True).

• wait_for_completion_show_output (bool) – If wait_for_completion is True this pa-
rameter indicates whether to show the run output on sys.stdout.

• submit_to_azureml (Optional[bool]) – If True, the codepath to create an AzureML run
will be executed. If False, the codepath for local execution (i.e., return immediately) will be
executed. If not provided (None), submission to AzureML will be triggered if the comman-
dline flag ‘–azureml’ is present in sys.argv

• hyperdrive_config (Optional[HyperDriveConfig]) – A configuration object for Hy-
perdrive (hyperparameter search).

64 Chapter 16. health_azure Package

hi-ml

Return type AzureRunInfo

Returns If the script is submitted to AzureML then we terminate python as the script should be
executed in AzureML, otherwise we return a AzureRunInfo object.

16.1.14 torch_barrier

health_azure.torch_barrier()
This is a barrier to use in distributed jobs. Use it to make all processes that participate in a distributed pytorch
job to wait for each other. When torch.distributed is not set up or not found, the function exits immediately.

Return type None

16.1.15 upload_to_datastore

health_azure.upload_to_datastore(datastore_name, local_data_folder, remote_path, aml_workspace=None,
workspace_config_path=None, overwrite=False, show_progress=False)

Upload a folder to an Azure ML Datastore that is registered within a given Workspace. Note that this will upload
all files within the folder, but will not copy the folder itself. E.g. if you specify the local_data_dir=”foo/bar” and
that contains the files [“1.txt”, “2.txt”], and you specify the remote_path=”baz”, you would see the following
paths uploaded to your Datastore: [“baz/1.txt”, “baz/2.txt”]

If not running inside AML and neither a workspace nor the config file are provided, the code will try to locate
a config.json file in any of the parent folders of the current working directory. If that succeeds, that config.json
file will be used to instantiate the workspace.

Parameters

• datastore_name (str) – The name of the Datastore to which the blob should be uploaded.
This Datastore itself must be an instance of an AzureBlobDatastore

• local_data_folder (Path) – The path to the local directory containing the data to be
uploaded

• remote_path (Path) – The path to which the blob should be uploaded

• aml_workspace (Optional[Workspace]) – Optional Azure ML Workspace object

• workspace_config_path (Optional[Path]) – Optional path to settings for Azure ML
Workspace

• overwrite (bool) – If True, will overwrite any existing file at the same remote path. If
False, will skip any duplicate files and continue to the next.

• show_progress (bool) – If True, will show the progress of the file download

Return type None

16.1. Functions 65

hi-ml

16.1.16 create_crossval_hyperdrive_config

health_azure.create_crossval_hyperdrive_config(num_splits,
cross_val_index_arg_name='cross_validation_split_index',
metric_name='val/loss')

Creates an Azure ML HyperDriveConfig object for running cross validation. Note: this config expects a metric
named <metric_name> to be logged in your training script([see here](https://docs.microsoft.com/en-us/azure/
machine-learning/how-to-tune-hyperparameters#log-metrics-for-hyperparameter-tuning))

Parameters

• num_splits (int) – The number of splits for k-fold cross validation

• cross_val_index_arg_name (str) – The name of the argument received by each of the
child runs that indicates which split that child represents.

• metric_name (str) – The name of the metric that the HyperDriveConfig will compare runs
by. Please note that it is your responsibility to make sure a metric with this name is logged
to the Run in your training script

Return type HyperDriveConfig

Returns an Azure ML HyperDriveConfig object

16.1.17 aggregate_hyperdrive_metrics

health_azure.aggregate_hyperdrive_metrics(run_id, child_run_arg_name, aml_workspace=None,
workspace_config_path=None)

For a given HyperDrive run id, retrieves the metrics from each of its children and then aggregates it. Returns a
DataFrame where each column is one child run, and each row is a metric logged by that child run. For example,
for a HyperDrive run with 2 children, where each logs epoch, accuracy and loss, the result would look like:

| 0 | 1 |

|--------------|—————–|--------------------| | epoch | [1, 2, 3] | [1, 2, 3] | | accuracy | [0.7, 0.8, 0.9] | [0.71, 0.82,
0.91] | | loss | [0.5, 0.4, 0.3] | [0.45, 0.37, 0.29] |

here each column is one of the splits/ child runs, and each row is one of the metrics you have logged to the run.

It is possible to log rows and tables in Azure ML by calling run.log_table and run.log_row respectively. In this
case, the DataFrame will contain a Dictionary entry instead of a list, where the keys are the table columns (or
keywords provided to log_row), and the values are the table values. e.g.

| 0 | 1 |

|----------------|——————————————|---| | accuracy_table
|{‘epoch’: [1, 2], ‘accuracy’: [0.7, 0.8]} | {‘epoch’: [1, 2], ‘accuracy’: [0.8, 0.9]} |

It is also possible to log plots in Azure ML by calling run.log_image and passing in a matplotlib plot. In this
case, the DataFrame will contain a string representing the path to the artifact that is generated by AML (the saved
plot in the Logs & Outputs pane of your run on the AML portal). E.g.

| 0 | 1 |

66 Chapter 16. health_azure Package

https://docs.microsoft.com/en-us/azure/machine-learning/how-to-tune-hyperparameters#log-metrics-for-hyperparameter-tuning
https://docs.microsoft.com/en-us/azure/machine-learning/how-to-tune-hyperparameters#log-metrics-for-hyperparameter-tuning

hi-ml

|----------------|—————————————–|---------------------------------------| | accuracy_plot |
aml://artifactId/ExperimentRun/dcid. . . . | aml://artifactId/ExperimentRun/dcid. . . |

Parameters

• run_id (str) – The run id (type: str) of the parent run. The type of this run must be an
AML HyperDriveRun

• child_run_arg_name (str) – the name of the argument given to each child run to denote
its position relative to other child runs (e.g. this arg could equal ‘child_run_index’ - then
each of your child runs should expect to receive the arg ‘–child_run_index’ with a value <=
the total number of child runs)

• aml_workspace (Optional[Workspace]) – If provided this is returned as the AzureML
Workspace.

• workspace_config_path (Optional[Path]) – If not provided with an AzureML
Workspace, then load one given the information in this config

Return type DataFrame

Returns A Pandas DataFrame containing the aggregated metrics from each child run

16.2 Classes

AzureRunInfo(input_datasets, . . .) This class stores all information that a script needs to run
inside and outside of AzureML.

DatasetConfig(name[, datastore, version, . . .]) Contains information to use AzureML datasets as inputs
or outputs.

16.2.1 AzureRunInfo

class health_azure.AzureRunInfo(input_datasets, output_datasets, mount_contexts, run,
is_running_in_azure_ml, output_folder, logs_folder)

Bases: object

This class stores all information that a script needs to run inside and outside of AzureML. It is return from
submit_to_azure_if_needed, where the return value depends on whether the script is inside or outside AzureML.

Please check the source code for detailed documentation for all fields.

16.2.2 DatasetConfig

class health_azure.DatasetConfig(name, datastore='', version=None, use_mounting=None,
target_folder=None, local_folder=None)

Bases: object

Contains information to use AzureML datasets as inputs or outputs.

Parameters

• name (str) – The name of the dataset, as it was registered in the AzureML workspace. For
output datasets, this will be the name given to the newly created dataset.

16.2. Classes 67

hi-ml

• datastore (str) – The name of the AzureML datastore that holds the dataset. This can
be empty if the AzureML workspace has only a single datastore, or if the default datastore
should be used.

• version (Optional[int]) – The version of the dataset that should be used. This is only
used for input datasets. If the version is not specified, the latest version will be used.

• use_mounting (Optional[bool]) – If True, the dataset will be “mounted”, that is, indi-
vidual files will be read or written on-demand over the network. If False, the dataset will
be fully downloaded before the job starts, respectively fully uploaded at job end for output
datasets. Defaults: False (downloading) for datasets that are script inputs, True (mounting)
for datasets that are script outputs.

• target_folder (Union[Path, str, None]) – The folder into which the dataset should be
downloaded or mounted. If left empty, a random folder on /tmp will be chosen.

• local_folder (Union[Path, str, None]) – The folder on the local machine at which the
dataset is available. This is used only for runs outside of AzureML. If this is empty then the
target_folder will be used to mount or download the dataset.

Methods Summary

to_input_dataset(workspace, dataset_index) Creates a configuration for using an AzureML dataset
inside of an AzureML run.

to_input_dataset_local(workspace) Return a local path to the dataset when outside of an
AzureML run.

to_output_dataset(workspace, dataset_index) Creates a configuration to write a script output to an
AzureML dataset.

Methods Documentation

to_input_dataset(workspace, dataset_index)
Creates a configuration for using an AzureML dataset inside of an AzureML run. This will make the
AzureML dataset with given name available as a named input, using INPUT_0 as the key for dataset index
0.

Parameters

• workspace (Workspace) – The AzureML workspace to read from.

• dataset_index (int) – Suffix for using datasets as named inputs, the dataset will be
marked INPUT_{index}

Return type DatasetConsumptionConfig

to_input_dataset_local(workspace)
Return a local path to the dataset when outside of an AzureML run. If local_folder is supplied, then this
is assumed to be a local dataset, and this is returned. Otherwise the dataset is mounted or downloaded to
either the target folder or a temporary folder and that is returned.

Parameters workspace (Optional[Workspace]) – The AzureML workspace to read from.

Return type Tuple[Optional[Path], Optional[MountContext]]

Returns Pair of optional path to dataset and optional mountcontext.

68 Chapter 16. health_azure Package

hi-ml

to_output_dataset(workspace, dataset_index)
Creates a configuration to write a script output to an AzureML dataset. The name and datastore of this new
dataset will be taken from the present object.

Parameters

• workspace (Workspace) – The AzureML workspace to read from.

• dataset_index (int) – Suffix for using datasets as named inputs, the dataset will be
marked OUTPUT_{index}

Return type OutputFileDatasetConfig

Returns

16.2. Classes 69

hi-ml

70 Chapter 16. health_azure Package

CHAPTER

SEVENTEEN

HEALTH_ML.UTILS PACKAGE

17.1 Functions

log_learning_rate(module[, name]) Logs the learning rate(s) used by the given module.
log_on_epoch (module[, name, value, metrics, . . .]) Write a dictionary with metrics and/or an individual

metric as a name/value pair to the loggers of the given
module.

17.1.1 log_learning_rate

health_ml.utils.log_learning_rate(module, name='learning_rate')
Logs the learning rate(s) used by the given module. Multiple learning rate schedulers and/or multiple rates
per scheduler are supported. The learning rates are logged under the given name. If multiple scheduler and/or
multiple rates are used, a suffix like “/0/1” is added, to indicate the learning rate for scheduler 0, index 1, for
example. Learning rates are logged on epoch.

Parameters

• module (LightningModule) – The module for which the learning rates should be logged.

• name (str) – The name to use when logging the learning rates.

Return type None

17.1.2 log_on_epoch

health_ml.utils.log_on_epoch(module, name=None, value=None, metrics=None, reduce_fx=<built-in
method mean of type object>, sync_dist=None, sync_dist_op='mean')

Write a dictionary with metrics and/or an individual metric as a name/value pair to the loggers of the given
module. Metrics are always logged upon epoch completion. The metrics in question first synchronized across
GPUs if DDP with >1 node is used, using the sync_dist_op (default: mean). Afterwards, they are aggregated
across all steps via the reduce_fx (default: mean). Metrics that are fed in as plain numbers rather than tensors
(for example, plain Python integers) are converted to tensors before logging, to enable synchronization across
GPUs if needed.

Parameters

• name (Optional[str]) – The name of the metric to log.

• value (Optional[Any]) – The actual value of the metric to log.

• metrics (Optional[Mapping[str, Any]]) – A dictionary with metrics to log.

71

hi-ml

• module (LightningModule) – The PyTorch Lightning module where the metrics should
be logged.

• sync_dist (Optional[bool]) – If not None, use this value for the sync_dist argument to
module.log. If None, set it automatically depending on the use of DDP. Set this to False if
you want to log metrics that are only available on Rank 0 of a DDP job.

• reduce_fx (Callable) – The reduce function to apply to the per-step values, after synchro-
nizing the tensors across GPUs. Default: torch.mean

• sync_dist_op (Any) – The reduce operation to use when synchronizing the tensors across
GPUs. This must be a value recognized by sync_ddp: ‘sum’, ‘mean’, ‘avg’

Return type None

17.2 Classes

AzureMLLogger() A Pytorch Lightning logger that stores metrics in the cur-
rent AzureML run.

AzureMLProgressBar([refresh_rate, . . .]) A PL progress bar that works better in AzureML.
BatchTimeCallback([. . .]) This callback provides tools to measure batch loading

time and other diagnostic information.

17.2.1 AzureMLLogger

class health_ml.utils.AzureMLLogger
Bases: pytorch_lightning.loggers.base.LightningLoggerBase

A Pytorch Lightning logger that stores metrics in the current AzureML run. If the present run is not inside
AzureML, nothing gets logged.

Methods Summary

experiment() Return the experiment object associated with this
logger.

log_hyperparams(params) Logs the given model hyperparameters to AzureML
as a table.

log_metrics(metrics[, step]) Writes the given metrics dictionary to the AzureML
run context.

name() Return the experiment name.
version() Return the experiment version.

72 Chapter 17. health_ml.utils Package

hi-ml

Methods Documentation

experiment()
Return the experiment object associated with this logger.

Return type Any

log_hyperparams(params)
Logs the given model hyperparameters to AzureML as a table. Namespaces are converted to dictionaries.
Nested dictionaries are flattened out.

Return type None

log_metrics(metrics, step=None)
Writes the given metrics dictionary to the AzureML run context. If the metrics dictionary has an epoch
key, the step value (x-axis for plots) is left empty. If there is no epoch key, the step value is taken from the
function argument. This is the case for metrics that are logged with the on_step=True flag.

Parameters

• metrics (Dict[str, float]) – A dictionary with metrics to log. Keys are strings, values
are floating point numbers.

• step (Optional[int]) – The trainer global step for logging.

Return type None

name()
Return the experiment name.

Return type Any

version()
Return the experiment version.

Return type int

17.2.2 AzureMLProgressBar

class health_ml.utils.AzureMLProgressBar(refresh_rate=50, print_timestamp=True,
write_to_logging_info=False)

Bases: pytorch_lightning.callbacks.progress.base.ProgressBarBase

A PL progress bar that works better in AzureML. It prints timestamps for each message, and works well with a
setup where there is no direct access to the console.

Usage example:

>>> from health_ml.utils import AzureMLProgressBar
>>> from pytorch_lightning import Trainer
>>> progress = AzureMLProgressBar(refresh_rate=100)
>>> trainer = Trainer(callbacks=[progress])

Parameters

• refresh_rate (int) – The number of steps after which the progress should be printed out.

• print_timestamp (bool) – If True, each message that the progress bar prints will be pre-
fixed with the current time in UTC. If False, no such prefix will be added.

17.2. Classes 73

hi-ml

• write_to_logging_info (bool) – If True, the progress information will be printed via
logging.info. If False, it will be printed to stdout via print.

Attributes Summary

PROGRESS_STAGE_PREDICT A string that indicates that the trainer loop is
presently in prediction mode.

PROGRESS_STAGE_TEST A string that indicates that the trainer loop is
presently in testing mode.

PROGRESS_STAGE_TRAIN A string that indicates that the trainer loop is
presently in training mode.

PROGRESS_STAGE_VAL A string that indicates that the trainer loop is
presently in validation mode.

is_disabled
rtype bool

is_enabled
rtype bool

refresh_rate
rtype int

Methods Summary

disable() You should provide a way to disable the progress bar.
enable() You should provide a way to enable the progress bar.
on_predict_batch_end(*args, **kwargs) Called when the predict batch ends.
on_predict_epoch_start(trainer, pl_module) Called when the predict epoch begins.
on_test_batch_end(*args, **kwargs) Called when the test batch ends.
on_test_epoch_start(trainer, pl_module) Called when the test epoch begins.
on_train_batch_end(*args, **kwargs) Called when the train batch ends.
on_train_epoch_start(trainer, pl_module) Called when the train epoch begins.
on_validation_batch_end(*args, **kwargs) Called when the validation batch ends.
on_validation_start(trainer, pl_module) Called when the validation loop begins.
start_stage(stage, total_num_batches) Sets the information that a new stage of the PL loop

is starting.
update_progress(batches_processed) Writes progress information once the refresh interval

is full.

74 Chapter 17. health_ml.utils Package

hi-ml

Attributes Documentation

PROGRESS_STAGE_PREDICT = 'Prediction'
A string that indicates that the trainer loop is presently in prediction mode.

PROGRESS_STAGE_TEST = 'Testing'
A string that indicates that the trainer loop is presently in testing mode.

PROGRESS_STAGE_TRAIN = 'Training'
A string that indicates that the trainer loop is presently in training mode.

PROGRESS_STAGE_VAL = 'Validation'
A string that indicates that the trainer loop is presently in validation mode.

is_disabled

Return type bool

is_enabled

Return type bool

refresh_rate

Return type int

Methods Documentation

disable()
You should provide a way to disable the progress bar.

The Trainer will call this to disable the output on processes that have a rank different from 0, e.g., in
multi-node training.

Return type None

enable()
You should provide a way to enable the progress bar.

The Trainer will call this in e.g. pre-training routines like the learning rate finder to temporarily enable
and disable the main progress bar.

Return type None

on_predict_batch_end(*args, **kwargs)
Called when the predict batch ends.

Return type None

on_predict_epoch_start(trainer, pl_module)
Called when the predict epoch begins.

Return type None

on_test_batch_end(*args, **kwargs)
Called when the test batch ends.

Return type None

on_test_epoch_start(trainer, pl_module)
Called when the test epoch begins.

Return type None

17.2. Classes 75

hi-ml

on_train_batch_end(*args, **kwargs)
Called when the train batch ends.

Return type None

on_train_epoch_start(trainer, pl_module)
Called when the train epoch begins.

Return type None

on_validation_batch_end(*args, **kwargs)
Called when the validation batch ends.

Return type None

on_validation_start(trainer, pl_module)
Called when the validation loop begins.

Return type None

start_stage(stage, total_num_batches)
Sets the information that a new stage of the PL loop is starting. The stage will be available in self.stage,
total_num_batches in self.total_num_batches. The time when this method was called is recorded in
self.stage_start_time

Parameters

• stage (str) – The string name of the stage that has just started.

• total_num_batches (int) – The total number of batches that need to be processed in
this stage. This is used only for progress reporting.

Return type None

update_progress(batches_processed)
Writes progress information once the refresh interval is full.

Parameters batches_processed (int) – The number of batches that have been processed for
the current stage.

Return type None

17.2.3 BatchTimeCallback

class health_ml.utils.BatchTimeCallback(max_batch_load_time_seconds=0.5,
max_load_time_warnings=3, max_load_time_epochs=5)

Bases: pytorch_lightning.callbacks.base.Callback

This callback provides tools to measure batch loading time and other diagnostic information. It prints alerts to
the console or to logging if the batch loading time is over a threshold for several epochs. Metrics for loading
time, as well as epoch time, and maximum and average batch processing time are logged to the loggers that are
set up on the module. In distributed training, all logging to the console and to the Lightning loggers will only
happen on global rank 0.

The loading time for a minibatch is estimated by the difference between the start time of a minibatch and the end
time of the previous minibatch. It will consequently also include other operations that happen between the end
of a batch and the start of the next one. For example, computationally expensive callbacks could also drive up
this time.

Usage example:

76 Chapter 17. health_ml.utils Package

hi-ml

>>> from health_ml.utils import BatchTimeCallback
>>> from pytorch_lightning import Trainer
>>> batchtime = BatchTimeCallback(max_batch_load_time_seconds=0.5)
>>> trainer = Trainer(callbacks=[batchtime])

Parameters

• max_batch_load_time_seconds (float) – The maximum expected loading time for a
minibatch (given in seconds). If the loading time exceeds this threshold, a warning is printed.
The maximum number of such warnings is controlled by the other arguments.

• max_load_time_warnings (int) – The maximum number of warnings about increased
loading time that will be printed per epoch. For example, if max_load_time_warnings=3, at
most 3 of these warnings will be printed within an epoch. The 4th minibatch with loading
time over the threshold would not generate any warning anymore. If set to 0, no warnings
are printed at all.

• max_load_time_epochs (int) – The maximum number of epochs where warnings about
the loading time are printed. For example, if max_load_time_epochs=2, and at least 1 batch
with increased loading time is observed in epochs 0 and 3, no further warnings about in-
creased loading time would be printed from epoch 4 onwards.

Attributes Summary

BATCH_TIME The name that is used to log the execution time per
batch.

EPOCH_TIME The name that is used to log the execution time per
epoch

EXCESS_LOADING_TIME The name that is used to log the time spent loading all
the batches that exceeding the loading time threshold.

METRICS_PREFIX The prefix for all metrics collected by this callback.
TRAIN_PREFIX The prefix for all metrics collected during training.
VAL_PREFIX The prefix for all metrics collected during validation.

Methods Summary

batch_end(is_training) Shared code to keep track of minibatch loading times.
batch_start(batch_idx, is_training) Shared code to keep track of minibatch loading times.
get_timers(is_training) Gets the object that holds all metrics and timers, for

either the validation or the training epoch.
log_metric(name_suffix, value, is_training) Write a metric given as a name/value pair to the cur-

rently trained module.
on_fit_start(trainer, pl_module) This is called at the start of training.
on_train_batch_end(trainer, pl_module, . . .) Called when the train batch ends.
on_train_batch_start(trainer, pl_module, . . .) Called when the train batch begins.
on_train_epoch_start(trainer, pl_module) Called when the train epoch begins.
on_validation_batch_end(trainer, pl_module,
. . .)

Called when the validation batch ends.

on_validation_batch_start(trainer, . . .) Called when the validation batch begins.
continues on next page

17.2. Classes 77

hi-ml

Table 7 – continued from previous page
on_validation_epoch_end(trainer, pl_module) This is a hook called at the end of a training or vali-

dation epoch.
on_validation_epoch_start(trainer,
pl_module)

Called when the val epoch begins.

write_and_log_epoch_time(is_training) Reads the IO timers for either the training or valida-
tion epoch, writes them to the console, and logs the
time per epoch.

Attributes Documentation

BATCH_TIME = 'batch_time [sec]'
The name that is used to log the execution time per batch.

EPOCH_TIME = 'epoch_time [sec]'
The name that is used to log the execution time per epoch

EXCESS_LOADING_TIME = 'batch_loading_over_threshold [sec]'
The name that is used to log the time spent loading all the batches that exceeding the loading time threshold.

METRICS_PREFIX = 'timing/'
The prefix for all metrics collected by this callback.

TRAIN_PREFIX = 'train/'
The prefix for all metrics collected during training.

VAL_PREFIX = 'val/'
The prefix for all metrics collected during validation.

Methods Documentation

batch_end(is_training)
Shared code to keep track of minibatch loading times. This is only done on global rank zero.

Parameters is_training (bool) – If true, this has been called from on_train_batch_end, oth-
erwise it has been called from on_validation_batch_end.

Return type None

batch_start(batch_idx, is_training)
Shared code to keep track of minibatch loading times. This is only done on global rank zero.

Parameters

• batch_idx (int) – The index of the current minibatch.

• is_training (bool) – If true, this has been called from on_train_batch_start, otherwise
it has been called from on_validation_batch_start.

Return type None

get_timers(is_training)
Gets the object that holds all metrics and timers, for either the validation or the training epoch.

Return type EpochTimers

log_metric(name_suffix, value, is_training, reduce_max=False)
Write a metric given as a name/value pair to the currently trained module. The full name of the metric is
composed of a fixed prefix “timing/”, followed by either “train/” or “val/”, and then the given suffix.

78 Chapter 17. health_ml.utils Package

hi-ml

Parameters

• name_suffix (str) – The suffix for the logged metric name.

• value (float) – The value to log.

• is_training (bool) – If True, use “train/” in the metric name, otherwise “val/”

• reduce_max (bool) – If True, use torch.max as the aggregation function for the logged
values. If False, use torch.mean

Return type None

on_fit_start(trainer, pl_module)
This is called at the start of training. It stores the model that is being trained, because it will be used later
to log values.

Return type None

on_train_batch_end(trainer, pl_module, outputs, batch, batch_idx, dataloader_idx)
Called when the train batch ends.

Return type None

on_train_batch_start(trainer, pl_module, batch, batch_idx, dataloader_idx)
Called when the train batch begins.

Return type None

on_train_epoch_start(trainer, pl_module)
Called when the train epoch begins.

Return type None

on_validation_batch_end(trainer, pl_module, outputs, batch, batch_idx, dataloader_idx)
Called when the validation batch ends.

Return type None

on_validation_batch_start(trainer, pl_module, batch, batch_idx, dataloader_idx)
Called when the validation batch begins.

Return type None

on_validation_epoch_end(trainer, pl_module)
This is a hook called at the end of a training or validation epoch. In here, we can still write metrics to a
logger.

Return type None

on_validation_epoch_start(trainer, pl_module)
Called when the val epoch begins.

Return type None

write_and_log_epoch_time(is_training)
Reads the IO timers for either the training or validation epoch, writes them to the console, and logs the time
per epoch.

Parameters is_training (bool) – If True, show and log the data for the training epoch. If
False, use the data for the validation epoch.

Return type None

17.2. Classes 79

hi-ml

80 Chapter 17. health_ml.utils Package

CHAPTER

EIGHTEEN

INDICES AND TABLES

• genindex

• modindex

• search

81

hi-ml

82 Chapter 18. Indices and tables

PYTHON MODULE INDEX

h
health_azure, 57

u
health_ml.utils, 71

83

hi-ml

84 Python Module Index

INDEX

A
aggregate_hyperdrive_metrics() (in module

health_azure), 66
AzureMLLogger (class in health_ml.utils), 72
AzureMLProgressBar (class in health_ml.utils), 73
AzureRunInfo (class in health_azure), 67

B
batch_end() (health_ml.utils.BatchTimeCallback

method), 78
batch_start() (health_ml.utils.BatchTimeCallback

method), 78
BATCH_TIME (health_ml.utils.BatchTimeCallback at-

tribute), 78
BatchTimeCallback (class in health_ml.utils), 76

C
create_crossval_hyperdrive_config() (in module

health_azure), 66
create_run_configuration() (in module

health_azure), 58
create_script_run() (in module health_azure), 59

D
DatasetConfig (class in health_azure), 67
disable() (health_ml.utils.AzureMLProgressBar

method), 75
download_checkpoints_from_run_id() (in module

health_azure), 60
download_files_from_run_id() (in module

health_azure), 59
download_from_datastore() (in module

health_azure), 60

E
enable() (health_ml.utils.AzureMLProgressBar

method), 75
EPOCH_TIME (health_ml.utils.BatchTimeCallback at-

tribute), 78
EXCESS_LOADING_TIME

(health_ml.utils.BatchTimeCallback attribute),
78

experiment() (health_ml.utils.AzureMLLogger
method), 73

F
fetch_run() (in module health_azure), 61

G
get_most_recent_run() (in module health_azure), 61
get_timers() (health_ml.utils.BatchTimeCallback

method), 78
get_workspace() (in module health_azure), 61

H
health_azure

module, 57
health_ml.utils

module, 71

I
is_disabled (health_ml.utils.AzureMLProgressBar at-

tribute), 75
is_enabled (health_ml.utils.AzureMLProgressBar at-

tribute), 75
is_running_in_azure_ml() (in module health_azure),

62

L
log_hyperparams() (health_ml.utils.AzureMLLogger

method), 73
log_learning_rate() (in module health_ml.utils), 71
log_metric() (health_ml.utils.BatchTimeCallback

method), 78
log_metrics() (health_ml.utils.AzureMLLogger

method), 73
log_on_epoch() (in module health_ml.utils), 71

M
METRICS_PREFIX (health_ml.utils.BatchTimeCallback

attribute), 78
module

health_azure, 57
health_ml.utils, 71

85

hi-ml

N
name() (health_ml.utils.AzureMLLogger method), 73

O
on_fit_start() (health_ml.utils.BatchTimeCallback

method), 79
on_predict_batch_end()

(health_ml.utils.AzureMLProgressBar
method), 75

on_predict_epoch_start()
(health_ml.utils.AzureMLProgressBar
method), 75

on_test_batch_end()
(health_ml.utils.AzureMLProgressBar
method), 75

on_test_epoch_start()
(health_ml.utils.AzureMLProgressBar
method), 75

on_train_batch_end()
(health_ml.utils.AzureMLProgressBar
method), 75

on_train_batch_end()
(health_ml.utils.BatchTimeCallback method),
79

on_train_batch_start()
(health_ml.utils.BatchTimeCallback method),
79

on_train_epoch_start()
(health_ml.utils.AzureMLProgressBar
method), 76

on_train_epoch_start()
(health_ml.utils.BatchTimeCallback method),
79

on_validation_batch_end()
(health_ml.utils.AzureMLProgressBar
method), 76

on_validation_batch_end()
(health_ml.utils.BatchTimeCallback method),
79

on_validation_batch_start()
(health_ml.utils.BatchTimeCallback method),
79

on_validation_epoch_end()
(health_ml.utils.BatchTimeCallback method),
79

on_validation_epoch_start()
(health_ml.utils.BatchTimeCallback method),
79

on_validation_start()
(health_ml.utils.AzureMLProgressBar
method), 76

P
PROGRESS_STAGE_PREDICT

(health_ml.utils.AzureMLProgressBar at-
tribute), 75

PROGRESS_STAGE_TEST
(health_ml.utils.AzureMLProgressBar at-
tribute), 75

PROGRESS_STAGE_TRAIN
(health_ml.utils.AzureMLProgressBar at-
tribute), 75

PROGRESS_STAGE_VAL (health_ml.utils.AzureMLProgressBar
attribute), 75

R
refresh_rate (health_ml.utils.AzureMLProgressBar

attribute), 75

S
set_environment_variables_for_multi_node()

(in module health_azure), 62
split_recovery_id() (in module health_azure), 62
start_stage() (health_ml.utils.AzureMLProgressBar

method), 76
submit_run() (in module health_azure), 62
submit_to_azure_if_needed() (in module

health_azure), 63

T
to_input_dataset() (health_azure.DatasetConfig

method), 68
to_input_dataset_local()

(health_azure.DatasetConfig method), 68
to_output_dataset() (health_azure.DatasetConfig

method), 68
torch_barrier() (in module health_azure), 65
TRAIN_PREFIX (health_ml.utils.BatchTimeCallback at-

tribute), 78

U
update_progress() (health_ml.utils.AzureMLProgressBar

method), 76
upload_to_datastore() (in module health_azure), 65

V
VAL_PREFIX (health_ml.utils.BatchTimeCallback at-

tribute), 78
version() (health_ml.utils.AzureMLLogger method), 73

W
write_and_log_epoch_time()

(health_ml.utils.BatchTimeCallback method),
79

86 Index

	First steps: How to run your Python code in the cloud
	Setting up AzureML
	Using the AzureML integration layer
	Essential arguments to submit_to_azure_if_needed
	Additional arguments you should know about
	Conda environments, Alternate pips, Private wheels

	Connecting to Azure
	Authentication
	Service Principal Authentication
	Creating the Service Principal
	Providing permissions to the Service Principal
	Azure Tenant ID

	Datasets
	Key concepts
	Blob Storage
	AzureML Data Stores
	AzureML Datasets
	Preparing data

	Using the datasets
	Input and output datasets
	Mounting and downloading
	Local execution
	Making a dataset available at a fixed folder location
	Dataset versions

	Hyperparameter Search via Hyperdrive
	Using Cheap Low Priority VMs
	Setting up the Compute Cluster
	Behaviour of Low Priority VMs
	Best Practice Guide for Your Jobs
	Writing and Using Recovery Checkpoints

	Additional Optimizers and Other State

	Commandline tools
	Run TensorBoard
	Download files from AML Runs
	Creating your own command line tools
	Defining your own argument types
	Example:

	Downloading from/ uploading to Azure ML
	Download files from an Azure ML Run
	Downloading checkpoint files from a run
	Downloading files from an Azure ML Datastore
	Uploading files to an Azure ML Datastore

	Examples
	Basic integration
	Output files
	Output datasets
	Input datasets
	Including input files in the snapshot
	Creating the dataset in AzureML
	Uploading the input files manually

	Hyperdrive
	Controlling when to submit to AzureML and when not
	Training with k-fold cross validation in Azure ML
	Retrieving the aggregated results of a cross validation/ HyperDrive run

	Logging metrics when training models in AzureML
	Basics
	Using PyTorch Lightning
	Making logging consistent when training with PyTorch Lightning
	Logging learning rates

	Performance Diagnostics
	AzureMLProgressBar
	BatchTimeCallback
	Caveats
	Usage example

	Notes for developers
	Creating a Conda environment
	Installing pyright
	Using specific versions hi-ml in your Python environments
	Common things to do
	Building documentation
	Setting up your AzureML workspace
	Creating and Deleting Docker Environments in AzureML
	Testing
	Creating a New Release

	Contributing to this toolbox
	Submitting a Pull Request
	Code style
	Unit testing
	Correct Sphinx Documentation

	Loading Images
	matplotlib
	OpenCV
	Pillow
	SciPy
	SimpleITK
	scikit-image
	numpy
	torch

	Results
	RGB Images
	Greyscale Images

	Whole Slide Images
	OpenSlide
	cuCIM
	Performance
	Loading and saving at lowest resolution
	Loading and saving as tiles at the medium resolution

	health_azure Package
	Functions
	create_run_configuration
	create_script_run
	download_files_from_run_id
	download_checkpoints_from_run_id
	download_from_datastore
	fetch_run
	get_most_recent_run
	get_workspace
	is_running_in_azure_ml
	set_environment_variables_for_multi_node
	split_recovery_id
	submit_run
	submit_to_azure_if_needed
	torch_barrier
	upload_to_datastore
	create_crossval_hyperdrive_config
	aggregate_hyperdrive_metrics

	Classes
	AzureRunInfo
	DatasetConfig

	health_ml.utils Package
	Functions
	log_learning_rate
	log_on_epoch

	Classes
	AzureMLLogger
	AzureMLProgressBar
	BatchTimeCallback

	Indices and tables
	Python Module Index
	Index

