
hi-ml

InnerEye

Jul 28, 2023

WORKING WITH AZURE

1 First steps: How to run your Python code in the cloud 3

2 Setting up Azure 7

3 Connecting to Azure 11

4 Datasets 13

5 Hyperparameter Search via Hyperdrive (AML SDK v1) 19

6 Hyperparameter Search in AML SDK v2 21

7 Using Cheap Low Priority VMs 23

8 Commandline tools 27

9 Downloading from/ uploading to Azure ML 31

10 Examples 33

11 Submitting jobs to Singularity using Amulet 41

12 Example Trainer Script for Amulet 45

13 Logging metrics when training models in and outside AzureML 47

14 Performance Diagnostics 51

15 Running ML experiments with hi-ml 53

16 Checkpoint Utils 61

17 HI-ML Tools for Computational Pathology 63

18 Using Public Datasets PANDA and TCGA-Crck 65

19 DeepMIL model for tumor grading on PANDA dataset 67

20 DeepMIL model for genetic mutation on TCGA-CRCK 71

21 Pre-training of an image encoder using self-supervised learning 73

22 Digital Slide Archive 77

i

23 Creating montages from whole slide images (WSIs) 83

24 Histopathology Scripts 87

25 HI-ML Multimodal Toolbox 89

26 API 93

27 Training of self-supervised models 119

28 Contributing to this toolbox 125

29 Design and Coding Guidelines 127

30 Setting up the Development Environment 133

31 Software Development Process 137

32 Debugging and Profiling 141

33 Loading Images as Torch Tensors 149

34 Whole Slide Images 159

35 Changelog 163

36 health_azure Package 169

37 health_ml Package 199

38 Indices and tables 207

Python Module Index 209

Index 211

ii

hi-ml

This toolbox helps to simplify and streamline work on deep learning models for healthcare and life sciences, by pro-
viding tested components (data loaders, pre-processing), deep learning models, and cloud integration tools.

The hi-ml toolbox provides

• Functionality to easily run Python code in Azure Machine Learning services

• Low-level and high-level building blocks for Machine Learning / AI researchers and practitioners.

WORKING WITH AZURE 1

hi-ml

2 WORKING WITH AZURE

CHAPTER

ONE

FIRST STEPS: HOW TO RUN YOUR PYTHON CODE IN THE CLOUD

The simplest use case for the hi-ml toolbox is taking a script that you developed, and run it inside of Azure Machine
Learning (AML) services. This can be helpful because the cloud gives you access to massive GPU resource, you can
consume vast datasets, and access multiple machines at the same time for distributed training.

1.1 Setting up AzureML

To run your code in the cloud, you need to have an AzureML workspace in your Azure subscription. Please follow the
instructions here to create an AzureML workspace if you don’t have one yet.

Download the config file from your AzureML workspace, as described here. Put this file (it should be called config.
json) into the folder where your script lives, or one of its parent folders. You can use parent folders up to the last
parent that is still included in the PYTHONPATH environment variable: hi-ml will try to be smart and search through
all folders that it thinks belong to your current project.

1.2 Using the AzureML integration layer

Consider a simple use case, where you have a Python script that does something - this could be training a model, or
pre-processing some data. The hi-ml package can help easily run that on Azure Machine Learning (AML) services.

Here is an example script that reads images from a folder, resizes and saves them to an output folder:

from pathlib import Path
if __name__ == '__main__':

input_folder = Path("/tmp/my_dataset")
output_folder = Path("/tmp/my_output")
for file in input_folder.glob("*.jpg"):

contents = read_image(file)
resized = contents.resize(0.5)
write_image(output_folder / file.name)

Doing that at scale can take a long time. We’d like to run that script in AzureML, consume the data from a folder
in blob storage, and write the results back to blob storage, so that we can later use it as an input for model training.

You can achieve that by adding a call to submit_to_azure_if_needed from the hi-ml package:

from pathlib import Path
from health_azure import submit_to_azure_if_needed
if __name__ == '__main__':

current_file = Path(__file__)
(continues on next page)

3

https://docs.microsoft.com/en-us/azure/machine-learning/how-to-configure-environment

hi-ml

(continued from previous page)

run_info = submit_to_azure_if_needed(compute_cluster_name="preprocess-ds12",
input_datasets=["images123"],
Omit this line if you don't create an output␣

→˓dataset (for example, in
model training scripts)
output_datasets=["images123_resized"],
default_datastore="my_datastore")

When running in AzureML, run_info.input_datasets and run_info.output_datasets will␣
→˓be populated,
and point to the data coming from blob storage. For runs outside AML, the paths␣

→˓will be None.
Replace the None with a meaningful path, so that we can still run the script␣

→˓easily outside AML.
input_dataset = run_info.input_datasets[0] or Path("/tmp/my_dataset")
output_dataset = run_info.output_datasets[0] or Path("/tmp/my_output")
files_processed = []
for file in input_dataset.glob("*.jpg"):

contents = read_image(file)
resized = contents.resize(0.5)
write_image(output_dataset / file.name)
files_processed.append(file.name)

Any other files that you would not consider an "output dataset", like metrics, etc,
→˓ should be written to
a folder "./outputs". Any files written into that folder will later be visible in␣

→˓the AzureML UI.
run_info.output_folder already points to the correct folder.
stats_file = run_info.output_folder / "processed_files.txt"
stats_file.write_text("\n".join(files_processed))

Once these changes are in place, you can submit the script to AzureML by supplying an additional --azureml flag on
the commandline, like python myscript.py --azureml.

Note that you do not need to modify the argument parser of your script to recognize the --azureml flag.

1.3 Essential arguments to submit_to_azure_if_needed

When calling submit_to_azure_if_needed, you can to supply the following parameters:

• compute_cluster_name (Mandatory): The name of the AzureML cluster that should run the job. This can
be a cluster with CPU or GPU machines. See here for documentation

• entry_script: The script that should be run. If omitted, the hi-ml package will assume that you would like
to submit the script that is presently running, given in sys.argv[0].

• snapshot_root_directory: The directory that contains all code that should be packaged and sent to
AzureML. All Python code that the script uses must be copied over. This defaults to the current work-
ing directory, but can be one of its parents. If you would like to explicitly skip some folders inside the
snapshot_root_directory, then use ignored_folders to specify those.

• conda_environment_file: The conda configuration file that describes which packages are necessary for your
script to run. If omitted, the hi-ml package searches for a file called environment.yml in the current folder or
its parents.

4 Chapter 1. First steps: How to run your Python code in the cloud

https://docs.microsoft.com/en-us/azure/machine-learning/how-to-create-attach-compute-studio#amlcompute

hi-ml

You can also supply an input dataset. For data pre-processing scripts, you can add an output dataset (omit this for ML
training scripts).

• To use datasets, you need to provision a data store in your AML workspace, that points to your training data in
blob storage. This is described here.

• input_datasets=["images123"] in the code above means that the script will consume all data in folder
images123 in blob storage as the input. The folder must exist in blob storage, in the location that you gave when
creating the datastore. Once the script has run, it will also register the data in this folder as an AML dataset.

• output_datasets=["images123_resized"] means that the script will create a temporary folder when run-
ning in AML, and while the job writes data to that folder, upload it to blob storage, in the data store.

For more examples, please see examples.md. For more details about datasets, see here.

1.4 Additional arguments you should know about

submit_to_azure_if_needed has a large number of arguments, please check the API documentation for an exhaus-
tive list. The particularly helpful ones are listed below.

• experiment_name: All runs in AzureML are grouped in “experiments”. By default, the experiment name is
determined by the name of the script you submit, but you can specify a name explicitly with this argument.

• environment_variables: A dictionary with the contents of all environment variables that should be set inside
the AzureML run, before the script is started.

• docker_base_image: This specifies the name of the Docker base image to use for creating the Python environ-
ment for your script. The amount of memory to allocate for Docker is given by docker_shm_size.

• num_nodes: The number of nodes on which your script should run. This is essential for distributed training.

• tags: A dictionary mapping from string to string, with additional tags that will be stored on the AzureML run.
This is helpful to add metadata about the run for later use.

1.5 Conda environments, Alternate pips, Private wheels

The function submit_to_azure_if_needed tries to locate a Conda environment file in the current folder, or in the
Python path, with the name environment.yml. The actual Conda environment file to use can be specified directly
with:

run_info = submit_to_azure_if_needed(
...
conda_environment_file=conda_environment_file,

where conda_environment_file is a pathlib.Path or a string identifying the Conda environment file to use.

The basic use of Conda assumes that packages listed are published Conda packages or published Python packages on
PyPI. However, during development, the Python package may be on Test.PyPI, or in some other location, in which case
the alternative package location can be specified directly with:

run_info = submit_to_azure_if_needed(
...
pip_extra_index_url="https://test.pypi.org/simple/",

Finally, it is possible to use a private wheel, if the package is only available locally with:

1.4. Additional arguments you should know about 5

https://docs.microsoft.com/en-us/azure/machine-learning/how-to-connect-data-ui
https://docs.conda.io/projects/conda/en/latest/user-guide/concepts/packages.html
https://pypi.org/
https://test.pypi.org/

hi-ml

run_info = submit_to_azure_if_needed(
...
private_pip_wheel_path=private_pip_wheel_path,

where private_pip_wheel_path is a pathlib.Path or a string identifying the wheel package to use. In this case,
this wheel will be copied to the AzureML environment as a private wheel.

6 Chapter 1. First steps: How to run your Python code in the cloud

CHAPTER

TWO

SETTING UP AZURE

If you already have an AzureML workspace available, you can go straight to the last step.

To set up all your Azure resources, you need to have:

• A subscription to Azure.

• An account that has “Owner” permissions to the Azure subscription.

There are two ways to set up all necessary resources, either via the Azure portal or via the Azure Command-line
Interface (CLI). We recommend the CLI because all necessary resources can be easily created via a single script.

2.1 Creating an AzureML workspace via the Azure Portal

If you prefer to create your workspace via the web UI on the Azure Portal, please follow the steps below.

• Create a resource group.

• Create a storage account for datasets.

• Create an AzureML workspace, compute instances and compute clusters.

2.2 Creating an AzureML workspace via the Azure Command-line
Tools

A pureley command-line driven setup is possible via the Azure Command-line Tools. These tools are available for
multiple platforms, including Linux, Mac, and Windows.

After downloading the command-line tools, you can run the following command add the ml extension that is required
to create an AzureML workspace:

az extension add --name ml

7

https://docs.microsoft.com/en-us/azure/azure-resource-manager/management/manage-resource-groups-portal
https://docs.microsoft.com/en-us/azure/storage/common/storage-account-create?tabs=azure-portal
https://docs.microsoft.com/en-us/azure/machine-learning/quickstart-create-resources
https://docs.microsoft.com/en-us/cli/azure/

hi-ml

2.2.1 Documentation

• Creating AzureML workspaces via the CLI.

• Creating Azure storage accounts via the CLI.

• Schema for creating datastores.

• Creating datastores via the CLI.

• Create a shared access signature.

2.2.2 Collecting the necessary information

Find out which Azure data centre locations you can use:

az account list-locations -o table

You will need the location names (second column in the table) to create resources in the right geographical regions.
Choosing the right region can be particularly important if your data governance requires the data to be processed inside
certain geographical boundaries.

For the storage account, please choose an SKU from based on your needs as described here. Most likely, Standard_LRS
will be the right SKU for you.

2.2.3 Creating resources

The script below will create

• an AzureML workspace.

• a storage account to hold the datasets, with a container called datasets.

• a datastore that links the AzureML workspace to the storage account.

• a resource group for all of the above items.

In the script, you will need to replace the values of the following variables:

• location - the location of the Azure datacenter you want to use.

• prefix - the prefix you want to use for the resources you create. This will also be the name of the AzureML
workspace.

export location=uksouth # The Azure location where the resources should be created
export prefix=himl # The name of the AzureML workspace. This is also the prefix␣
→˓for all other resources.
export container=datasets
export datastorefile=datastore.yaml
az group create \

--name ${prefix}rg \
--location ${location}

az storage account create \
--name ${prefix}data \
--resource-group ${prefix}rg \
--location ${location} \
--sku Standard_LRS

az storage container create \
(continues on next page)

8 Chapter 2. Setting up Azure

https://docs.microsoft.com/en-us/azure/machine-learning/how-to-manage-workspace-cli
https://docs.microsoft.com/en-us/cli/azure/storage?view=azure-cli-latest
https://docs.microsoft.com/en-us/azure/machine-learning/reference-yaml-datastore-blob
https://docs.microsoft.com/en-us/cli/azure/ml/datastore?view=azure-cli-latest
https://docs.microsoft.com/en-us/azure/storage/blobs/storage-blob-user-delegation-sas-create-cli
https://docs.microsoft.com/en-us/rest/api/storagerp/srp_sku_types

hi-ml

(continued from previous page)

--account-name ${prefix}data \
--name ${container} \
--auth-mode

az ml workspace create \
--resource-group ${prefix}rg \
--name ${prefix} \
--location ${location}

key=$(az storage account keys list --resource-group ${prefix}rg --account-name ${prefix}
→˓data --query [0].value -o tsv)
cat >${datastorefile} <<EOL
\$schema: https://azuremlschemas.azureedge.net/latest/azureBlob.schema.json
name: datasets
type: azure_blob
description: Pointing to the `${container}` container in the ${prefix}data storage␣
→˓account.
account_name: ${prefix}data
container_name: ${container}
credentials:
account_key: ${key}

EOL
az ml datastore create --file ${datastorefile} --resource-group ${prefix}rg --workspace-
→˓name ${prefix}
rm ${datastorefile}

Note that the datastore will use the storage account key to authenticate. If you want to use Shared Access Signature
(SAS) instead, replace the creation of the datastore config file in the above script with the following command:

key=$(az storage container generate-sas --account-name ${prefix}data --name ${container}␣
→˓--permissions acdlrw --https-only --expiry 2024-01-01 -o tsv)
cat >${datastorefile} <<EOL
\$schema: https://azuremlschemas.azureedge.net/latest/azureBlob.schema.json
name: ${name}
type: azure_blob
description: Pointing to the `${container}` container in the ${prefix}data storage␣
→˓account.
account_name: ${prefix}data
container_name: ${container}
credentials:
sas_token: ${key}

EOL

You can adjust the expiry date of the SAS token and the permissions of the SAS token (full read/write permission

in the script above). For further options, run az storage container generate-sas --help

2.2. Creating an AzureML workspace via the Azure Command-line Tools 9

hi-ml

2.2.4 Creating compute clusters and permissions

Now that you have created the core AzureML workspace, you need to create a compute cluster.

To adjust permissions, find the AzureML workspace that you just created in the Azure Portal. Add yourself and your
team members with “Contributor” permissions to the workspace, following the guidelines here.

2.3 Accessing the workspace

The hi-ml toolbox relies on a workspace configuration file called config.json to access the right AzureML
workspace. This file can be downloaded from the UI of the workspace. It needs to be placed either in your copy
of the hi-ml repository, or in your repository that uses the hi-ml package.

• In the browser, navigate to the AzureML workspace that you want to use for running your training job.

• In the top right section, there will be a dropdown menu showing the name of your AzureML workspace. Expand
that.

• In the panel, there is a link “Download config file”. Click that.

• This will download a file config.json. Copy that file to the root folder of your repository.

The file config.json should look like this:

{
"subscription_id": "xxxxxxxx-xxxx-xxxx-xxxx-xxxxxxxxxxxx",
"resource_group": "myresourcegroup",
"workspace_name": "myworkspace"

}

As an alternative to keeping the config.json file in your repository, you can specify the necessary information in
environment variables. The environment variables are:

• HIML_SUBSCRIPTION_ID: The subscription ID of the AzureML workspace, taken from the subscription_id
field in the config.json file.

• HIML_RESOURCE_GROUP: The resource group of the AzureML workspace, taken from the resource_group
field in the config.json file.

• HIML_WORKSPACE_NAME: The name of the AzureML workspace, taken from the workspace_name field in the
config.json file.

When accessing the workspace, the hi-ml toolbox will first look for the config.json file. If it is not found, it will fall
back to the environment variables. For details, see the documentation of the get_workspace function in readthedocs.

10 Chapter 2. Setting up Azure

https://docs.microsoft.com/en-us/azure/machine-learning/quickstart-create-resources#cluster
https://docs.microsoft.com/en-us/azure/role-based-access-control/role-assignments-portal?tabs=current
https://hi-ml.readthedocs.io/en/latest/api/health_azure.get_workspace.html

CHAPTER

THREE

CONNECTING TO AZURE

3.1 Authentication

The hi-ml package uses two possible ways of authentication with Azure. The default is what is called “Interactive
Authentication”. When you submit a job to Azure via hi-ml, this will use the credentials you used in the browser when
last logging into Azure. If there are no credentials yet, you should see instructions printed out to the console about how
to log in using your browser.

We recommend using Interactive Authentication.

Alternatively, you can use a so-called Service Principal, for example within build pipelines.

3.2 Service Principal Authentication

A Service Principal is a form of generic identity or machine account. This is essential if you would like to submit
training runs from code, for example from within an Azure pipeline. You can find more information about application
registrations and service principal objects here.

If you would like to use Service Principal, you will need to create it in Azure first, and then store 3 pieces of information
in 3 environment variables — please see the instructions below. When all the 3 environment variables are in place,
your Azure submissions will automatically use the Service Principal to authenticate.

3.2.1 Creating the Service Principal

1. Navigate back to aka.ms/portal

2. Navigate to App registrations (use the top search bar to find it).

3. Click on + New registration on the top left of the page.

4. Choose a name for your application e.g. MyServicePrincipal and click Register.

5. Once it is created you will see your application in the list appearing under App registrations. This step might
take a few minutes.

6. Click on the resource to access its properties. In particular, you will need the application ID. You can find this
ID in the Overview tab (accessible from the list on the left of the page).

7. Create an environment variable called HIML_SERVICE_PRINCIPAL_ID, and set its value to the application ID
you just saw.

8. You need to create an application secret to access the resources managed by this service principal. On the pane
on the left find Certificates & Secrets. Click on + New client secret (bottom of the page), note down

11

https://docs.microsoft.com/en-us/azure/active-directory/develop/app-objects-and-service-principals
https://aka.ms/portal

hi-ml

your token. Warning: this token will only appear once at the creation of the token, you will not be able to
re-display it again later.

9. Create an environment variable called HIML_SERVICE_PRINCIPAL_PASSWORD, and set its value to the token
you just added.

3.2.2 Providing permissions to the Service Principal

Now that your service principal is created, you need to give permission for it to access and manage your AzureML
workspace. To do so:

1. Go to your AzureML workspace. To find it you can type the name of your workspace in the search bar above.

2. On the Overview page, there is a link to the Resource Group that contains the workspace. Click on that.

3. When on the Resource Group, navigate to Access control. Then click on + Add > Add role assignment.
A pane will appear on the the right. Select Role > Contributor. In the Select field type the name of your
Service Principal and select it. Finish by clicking Save at the bottom of the pane.

3.2.3 Azure Tenant ID

The last remaining piece is the Azure tenant ID, which also needs to be available in an environment variable. To get
that ID:

1. Log into Azure

2. Via the search bar, find “Azure Active Directory” and open it.

3. In the overview of that, you will see a field “Tenant ID”

4. Create an environment variable called HIML_TENANT_ID, and set that to the tenant ID you just saw.

12 Chapter 3. Connecting to Azure

CHAPTER

FOUR

DATASETS

4.1 Key concepts

We’ll first outline a few concepts that are helpful for understanding datasets.

4.1.1 Blob Storage

Firstly, there is Azure Blob Storage. Each blob storage account has multiple containers - you can think of containers as
big disks that store files. The hi-ml package assumes that your datasets live in one of those containers, and each top
level folder corresponds to one dataset.

4.1.2 AzureML Data Stores

Secondly, there are data stores. This is a concept coming from Azure Machine Learning, described here. Data stores
provide access to one blob storage account. They exist so that the credentials to access blob storage do not have to be
passed around in the code - rather, the credentials are stored in the data store once and for all.

You can view all data stores in your AzureML workspace by clicking on one of the bottom icons in the left-hand
navigation bar of the AzureML studio.

One of these data stores is designated as the default data store.

4.1.3 AzureML Datasets

Thirdly, there are datasets. Again, this is a concept coming from Azure Machine Learning. A dataset is defined by

• A data store

• A set of files accessed through that data store

You can view all datasets in your AzureML workspace by clicking on one of the icons in the left-hand navigation bar
of the AzureML studio.

13

https://docs.microsoft.com/en-us/azure/storage/blobs/storage-blobs-introduction
https://docs.microsoft.com/en-us/azure/machine-learning/how-to-access-data

hi-ml

4.1.4 Preparing data

To simplify usage, the hi-ml package creates AzureML datasets for you. All you need to do is to

• Create a blob storage account for your data, and within it, a container for your data.

• Create a data store that points to that storage account, and store the credentials for the blob storage account in it

From that point on, you can drop a folder of files in the container that holds your data. Within the hi-ml package, just
reference the name of the folder, and the package will create a dataset for you, if it does not yet exist.

4.2 Using the datasets

The simplest way of specifying that your script uses a folder of data from blob storage is as follows: Add the
input_datasets argument to your call of submit_to_azure_if_needed like this:

from health_azure import submit_to_azure_if_needed
run_info = submit_to_azure_if_needed(...,

input_datasets=["my_folder"],
default_datastore="my_datastore",

)
input_folder = run_info.input_datasets[0]

What will happen under the hood?

• The toolbox will check if there is already an AzureML dataset called “my_folder”. If so, it will use that. If there
is no dataset of that name, it will create one from all the files in blob storage in folder “my_folder”. The dataset
will be created using the data store provided, “my_datastore”.

• Once the script runs in AzureML, it will download the dataset “my_folder” to a temporary folder.

• You can access this temporary location by run_info.input_datasets[0], and read the files from it.

More complicated setups are described below.

4.2.1 Input and output datasets

Any run in AzureML can consume a number of input datasets. In addition, an AzureML run can also produce an output
dataset (or even more than one).

Output datasets are helpful if you would like to run, for example, a script that transforms one dataset into another.

You can use that via the output_datasets argument:

from health_azure import submit_to_azure_if_needed
run_info = submit_to_azure_if_needed(...,

input_datasets=["my_folder"],
output_datasets=["new_dataset"],
default_datastore="my_datastore",

)
input_folder = run_info.input_datasets[0]
output_folder = run_info.output_datasets[0]

Your script can now read files from input_folder, transform them, and write them to output_folder. The latter
will be a folder on the temp file system of the machine. At the end of the script, the contents of that temp folder will be
uploaded to blob storage, and registered as a dataset.

14 Chapter 4. Datasets

hi-ml

4.2.2 Mounting and downloading

An input dataset can be downloaded before the start of the actual script run, or it can be mounted. When mounted, the
files are accessed via the network once needed - this is very helpful for large datasets where downloads would create a
long waiting time before the job start.

Similarly, an output dataset can be uploaded at the end of the script, or it can be mounted. Mounting here means that
all files will be written to blob storage already while the script runs (rather than at the end).

Note: If you are using mounted output datasets, you should NOT rename files in the output folder.

Mounting and downloading can be triggered by passing in DatasetConfig objects for the input_datasets argu-
ment, like this:

from health_azure import DatasetConfig, submit_to_azure_if_needed
input_dataset = DatasetConfig(name="my_folder", datastore="my_datastore", use_
→˓mounting=True)
output_dataset = DatasetConfig(name="new_dataset", datastore="my_datastore", use_
→˓mounting=True)
run_info = submit_to_azure_if_needed(...,

input_datasets=[input_dataset],
output_datasets=[output_dataset],

)
input_folder = run_info.input_datasets[0]
output_folder = run_info.output_datasets[0]

4.2.3 Local execution

For debugging, it is essential to have the ability to run a script on a local machine, outside of AzureML. Clearly, your
script needs to be able to access data in those runs too.

There are two ways of achieving that: Firstly, you can specify an equivalent local folder in the DatasetConfig objects:

from pathlib import Path
from health_azure import DatasetConfig, submit_to_azure_if_needed
input_dataset = DatasetConfig(name="my_folder",

datastore="my_datastore",
local_folder=Path("/datasets/my_folder_local"),
)

run_info = submit_to_azure_if_needed(...,
input_datasets=[input_dataset],

)
input_folder = run_info.input_datasets[0]

Secondly, if local_folder is not specified, then the dataset will either be downloaded or mounted to a temporary
folder locally, depending on the use_mounting flag. The path to it will be available in run_info as above.

input_folder = run_info.input_datasets[0]

Note that mounting the dataset locally is only supported on Linux because it requires the use of the native package lib-
fuse, which must first be installed. Also, if running in a Docker container, it must be started with additional arguments.
For more details see here: azureml.data.filedataset.mount.

4.2. Using the datasets 15

https://github.com/libfuse/libfuse/
https://github.com/libfuse/libfuse/
https://docs.microsoft.com/en-us/python/api/azureml-core/azureml.data.filedataset?view=azure-ml-py#mount-mount-point-none----kwargs-

hi-ml

4.2.4 Making a dataset available at a fixed folder location

Occasionally, scripts expect the input dataset at a fixed location, for example, data is always read from /tmp/mnist.
AzureML has the capability to download/mount a dataset to such a fixed location. With the hi-ml package, you can
trigger that behaviour via an additional option in the DatasetConfig objects:

from health_azure import DatasetConfig, submit_to_azure_if_needed
input_dataset = DatasetConfig(name="my_folder",

datastore="my_datastore",
use_mounting=True,
target_folder="/tmp/mnist",
)

run_info = submit_to_azure_if_needed(...,
input_datasets=[input_dataset],

)
Input_folder will now be "/tmp/mnist"
input_folder = run_info.input_datasets[0]

This is also true when running locally - if local_folder is not specified and an AzureML workspace can be found,
then the dataset will be downloaded or mounted to the target_folder.

4.2.5 Overwriting existing output datasets

When creating an output dataset with the same name as an existing dataset, the default behaviour of hi-ml is to over-
write the existing datasets. This is as if a run fails during the upload stage, corrupt files may be created. Allowing
overwriting means that these corrupt datasets will not cause errors. If you wish to disable this behaviour, it can be con-
trolled using the overwrite_existing parameter (only available in sdk v1, hence setting strictly_aml_v1=True):

from health_azure import DatasetConfig, submit_to_azure_if_needed
output_dataset = DatasetConfig(name="my_folder",

datastore="my_datastore",
overwrite_existing=False,
)

fails if output dataset already exists:
run_info = submit_to_azure_if_needed(...,

output_datasets=[output_dataset],
strictly_aml_v1=True,

)

4.2.6 Dataset versions

AzureML datasets can have versions, starting at 1. You can view the different versions of a dataset in the AzureML
workspace. In the hi-ml toolbox, you would always use the latest version of a dataset unless specified otherwise. If
you do need a specific version, use the version argument in the DatasetConfig objects:

from health_azure import DatasetConfig, submit_to_azure_if_needed
input_dataset = DatasetConfig(name="my_folder",

datastore="my_datastore",
version=7,

(continues on next page)

16 Chapter 4. Datasets

hi-ml

(continued from previous page)

)
run_info = submit_to_azure_if_needed(...,

input_datasets=[input_dataset],
)

input_folder = run_info.input_datasets[0]

4.2. Using the datasets 17

hi-ml

18 Chapter 4. Datasets

CHAPTER

FIVE

HYPERPARAMETER SEARCH VIA HYPERDRIVE (AML SDK V1)

HyperDrive runs can start multiple AzureML jobs in parallel. This can be used for tuning hyperparameters, or exe-
cuting multiple training runs for cross validation. To use that with the hi-ml package, simply supply a HyperDrive
configuration object as an additional argument. Note that this object needs to be created with an empty run_config
argument (this will later be replaced with the correct run_config that submits your script.)

The example below shows a hyperparameter search that aims to minimize the validation loss val_loss, by choosing
one of three possible values for the learning rate commandline argument learning_rate.

from azureml.core import ScriptRunConfig
from azureml.train.hyperdrive import GridParameterSampling, HyperDriveConfig,␣
→˓PrimaryMetricGoal, choice
from health_azure import submit_to_azure_if_needed
hyperdrive_config = HyperDriveConfig(

run_config=ScriptRunConfig(source_directory=""),
hyperparameter_sampling=GridParameterSampling(

parameter_space={
"learning_rate": choice([0.1, 0.01, 0.001])

}),
primary_metric_name="val_loss",
primary_metric_goal=PrimaryMetricGoal.MINIMIZE,
max_total_runs=5

)
submit_to_azure_if_needed(..., hyperdrive_config=hyperdrive_config)

For further examples, please check the example scripts here, and the HyperDrive documentation.

19

https://docs.microsoft.com/en-us/azure/machine-learning/how-to-tune-hyperparameters
https://docs.microsoft.com/en-us/azure/machine-learning/how-to-tune-hyperparameters

hi-ml

20 Chapter 5. Hyperparameter Search via Hyperdrive (AML SDK v1)

CHAPTER

SIX

HYPERPARAMETER SEARCH IN AML SDK V2

There is no concept of a HyperDriveConfig in AML SDK v2. Instead, hyperparameter search arguments are passed into
a command, and then the ‘sweep’ method is called AML docs. To specify a hyperparameter search job you must specify
the method get_parameter_tuning_args in your Container. This should return a dictionary of the arguments to be
passed in to the command. For example:

def get_parameter_tuning_args(self) -> Dict[str, Any]:
from azure.ai.ml.entities import Choice
from health_azure.himl import (MAX_TOTAL_TRIALS_ARG, PARAM_SAMPLING_ARG,␣

→˓SAMPLING_ALGORITHM_ARG,
PRIMARY_METRIC_ARG, GOAL_ARG)

values = [0.1, 0.5, 0.9]
argument_name = "learning_rate"
param_sampling = {argument_name: Choice(values)}
metric_name = "val/loss"

hparam_args = {
MAX_TOTAL_TRIALS_ARG: len(values),
PARAM_SAMPLING_ARG: param_sampling,
SAMPLING_ALGORITHM_ARG: "grid",
PRIMARY_METRIC_ARG: metric_name,
GOAL_ARG: "Minimize"

}
return hparam_args

Additional parameters, sampling strategies, limits etc. are described in the link above. Note that each job that is created
will receive an additional command line argument <argument_name> and it is your job to update the script to be able
to parse and use this argument.

21

https://learn.microsoft.com/en-us/azure/machine-learning/how-to-tune-hyperparameters

hi-ml

22 Chapter 6. Hyperparameter Search in AML SDK v2

CHAPTER

SEVEN

USING CHEAP LOW PRIORITY VMS

By using Low Priority machines in AzureML, we can run training at greatly reduced costs (around 20% of the original
price, see references below for details). This comes with the risk, though, of having the job interrupted and later
re-started. This document describes the inner workings of Low Priority compute, and how to best make use of it.

Because the jobs can get interrupted, low priority machines are not suitable for production workload where time is
critical. They do offer a lot of benefits though for long-running training jobs or large scale experimentation, that would
otherwise be expensive to carry out.

7.1 Setting up the Compute Cluster

Jobs in Azure Machine Learning run in a “compute cluster”. When creating a compute cluster, we can specify the
size of the VM, the type and number of GPUs, etc. Doing this via the AzureML UI is described here. Doing it
programmatically is described here

One of the setting to tweak when creating the compute cluster is whether the machines are “Dedicated” or “Low
Priority”:

• Dedicated machines will be permanently allocated to your compute cluster. The VMs in a dedicated cluster will
be always available, unless the cluster is set up in a way that it removes idle machine. Jobs will not be interrupted.

• Low priority machines effectively make use of spare capacity in the data centers, you can think of them as
“dedicated machines that are presently idle”. They are available at a much lower price (around 20% of the price
of a dedicated machine). These machines are made available to you until they are needed as dedicated machines
somewhere else.

In order to get a compute cluster that operates at the lowest price point, choose

• Low priority machines

• Set “Minimum number of nodes” to 0, so that the cluster removes all idle machines if no jobs are running.

For details on pricing, check this Azure price calculator, choose “Category: GPU”. The price for low priority VMs is
given in the “Spot” column

23

https://docs.microsoft.com/en-us/azure/machine-learning/how-to-create-attach-compute-studio#amlcompute
https://docs.microsoft.com/en-us/azure/machine-learning/how-to-create-attach-compute-cluster?tabs=python
https://azure.microsoft.com/en-us/pricing/details/virtual-machine-scale-sets/linux/

hi-ml

7.2 Behaviour of Low Priority VMs

Jobs can be interrupted at any point, this is called “low priority preemption”. When interrupted, the job stops - there
is no signal that we can make use of to do cleanup or something. All the files that the job has produced up to that point
in the outputs and logs folders will be saved to the cloud.

At some later point, the job will be assigned a virtual machine again. When re-started, all the files that the job had
produced in its previous run will be available on disk again where they were before interruption, mounted at the same
path. That is, if the interrupted job wrote a file outputs/foo.txt, this file will be accessible as outputs/foo.txt
also after the restart.

Note that all AzureML-internal log files that the job produced in a previous run will be overwritten (this behaviour
may change in the future). That is in contrast to the behaviour for metrics that the interrupted job had saved to AzureML
already (for example, metrics written by a call like Run.log("loss", loss_tensor.item())): Those metrics are
already stored in AzureML, and will still be there when the job restarts. The re-started job will then append to the
metrics that had been written in the previous run. This typically shows as sudden jumps in metrics, as illustrated here:

In this example, the learning rate
was increasing for the first 6 or so epochs. Then the job got preempted, and started training from scratch, with the initial
learning rate and schedule. Note that this behaviour is only an artifact of how the metrics are stored in AzureML, the
actual training is doing the right thing.

How do you verify that your job got interrupted? Usually, you would see a warning displayed on the job page in the
AzureML UI, that says something along the lines of “Low priority compute preemption warning: a node has been
preempted.” . You can use kinks in metrics as another indicator that your job got preempted: Sudden jumps in metrics
after which the metric follows a shape similar to the one at job start usually indicates low priority preemption.

Note that a job can be interrupted more than one time.

24 Chapter 7. Using Cheap Low Priority VMs

hi-ml

7.3 Best Practice Guide for Your Jobs

In order to make best use of low priority compute, your code needs to be made resilient to restarts. Essentially, this
means that it should write regular checkpoints, and try to use those checkpoint files if they already exist. Examples of
how to best do that are given below.

In addition, you need to bear in mind that the job can be interrupted at any moment, for example when it is busy
uploading huge checkpoint files to Azure. When trying to upload again after restart, there can be resource collisions.

7.3.1 Writing and Using Recovery Checkpoints

When using PyTorch Lightning, you can add a checkpoint callback to your trainer, that ensures that you save the model
and optimizer to disk in regular intervals. This callback needs to be added to your Trainer object. Note that these
recovery checkpoints need to be written to the outputs folder, because only files in this folder get saved to Azure
automatically when the job gets interrupted.

When starting training, your code needs to check if there is already a recovery checkpoint present on disk. If so, training
should resume from that point.

Here is a code snippet that illustrates all that:

import re
from pathlib import Path
import numpy as np
from health_ml.utils import AzureMLLogger
from pytorch_lightning import Trainer
from pytorch_lightning.callbacks import ModelCheckpoint

RECOVERY_CHECKPOINT_FILE_NAME = "recovery_"
CHECKPOINT_FOLDER = "outputs/checkpoints"

def get_latest_recovery_checkpoint():
all_recovery_files = [f for f in Path(CHECKPOINT_FOLDER).glob(RECOVERY_CHECKPOINT_

→˓FILE_NAME + "*")]
if len(all_recovery_files) == 0:

return None
Get recovery checkpoint with highest epoch number
recovery_epochs = [int(re.findall(r"[\d]+", f.stem)[0]) for f in all_recovery_files]
idx_max_epoch = int(np.argmax(recovery_epochs))
return str(all_recovery_files[idx_max_epoch])

recovery_checkpoint = ModelCheckpoint(dirpath=CHECKPOINT_FOLDER,
filename=RECOVERY_CHECKPOINT_FILE_NAME + "{epoch}",
period=10)

trainer = Trainer(default_root_dir="outputs",
callbacks=[recovery_checkpoint],
logger=[AzureMLLogger()],
resume_from_checkpoint=get_latest_recovery_checkpoint())

7.3. Best Practice Guide for Your Jobs 25

hi-ml

7.4 Additional Optimizers and Other State

In order to be resilient to interruption, your jobs need to save all their state to disk. In PyTorch Lightning training, this
would include all optimizers that you are using. The “normal” optimizer for model training is saved to the checkpoint
by Lightning already. However, you may be using callbacks or other components that maintain state. As an example,
training a linear head for self-supervised learning can be done in a callback, and that callback can have its own optimizer.
Such callbacks need to correctly implement the on_save_checkpoint method to save their state to the checkpoint,
and on_load_checkpoint to load it back in.

For more information about persisting state, check the PyTorch Lightning documentation .

26 Chapter 7. Using Cheap Low Priority VMs

https://pytorch-lightning.readthedocs.io/en/latest/extensions/callbacks.html?highlight=callback#persisting-state

CHAPTER

EIGHT

COMMANDLINE TOOLS

8.1 Run TensorBoard

From the command line, run the command

himl-tb

specifying one of [--experiment] [--latest_run_file] [--run]

This will start a TensorBoard session, by default running on port 6006. To use an alternative port, specify this with
--port.

If --experiment is provided, the most recent Run from this experiment will be visualised. If --latest_run_file
is provided, the script will expect to find a RunId in this file. Alternatively you can specify the Runs to visualise via
--run. This can be a single run id, or multiple ids separated by commas. This argument also accepts one or more run
recovery ids, although these are not recommended since it is no longer necessary to provide an experiment name in
order to recovery an AML Run.

By default, this tool expects that your TensorBoard logs live in a folder named ‘logs’ and will create a similarly named
folder in your root directory. If your TensorBoard logs are stored elsewhere, you can specify this with the --log_dir
argument.

If you choose to specify --experiment, you can also specify --num_runs to view and/or --tags to filter by.

If your AML config path is not ROOT_DIR/config.json, you must also specify --config_file.

To see an example of how to create TensorBoard logs using PyTorch on AML, see the AML submitting script which
submits the following pytorch sample script. Note that to run this, you’ll need to create an environment with pytorch
and tensorboard as dependencies, as a minimum. See an example conda environemnt. This will create an experiment
named ‘tensorboard_test’ on your Workspace, with a single run. Go to outputs + logs -> outputs to see the tensorboard
events file.

8.2 Download files from AML Runs

From the command line, run the command

himl-download

specifying one of [--experiment] [--latest_run_file] [--run]

If --experiment is provided, the most recent Run from this experiment will be downloaded. If --latest_run_file
is provided, the script will expect to find a RunId in this file. Alternatively you can specify the Run to download via
--run. This can be a single run id, or multiple ids separated by commas. This argument also accepts one or more run
recovery ids, although these are not recommended since it is no longer necessary to provide an experiment name in
order to recovery an AML Run.

27

hi-ml

The files associated with your Run will be downloaded to the location specified with --output_dir (by default
ROOT_DIR/outputs)

If you choose to specify --experiment, you can also specify --tags to filter by.

If your AML config path is not ROOT_DIR/config.json, you must also specify --config_file.

8.3 Creating your own command line tools

When creating your own command line tools that interact with the Azure ML ecosystem, you may wish to use the
AmlRunScriptConfig class for argument parsing. This gives you a quickstart way for accepting command line argu-
ments to specify the following

• experiment: a string representing the name of an Experiment, from which to retrieve AML runs

• tags: to filter the runs within the given experiment

• num_runs: to define the number of most recent runs to return from the experiment

• run: to instead define one or more run ids from which to retrieve runs (also supports the older format of run
recovery ideas although these are obsolete now)

• latest_run_file: to instead provide a path to a file containing the id of your latest run, for retrieval.

• config_path: to specify a config.json file in which your workspace settings are defined

You can extend this list of arguments by creating a child class that inherits from AMLRunScriptConfig.

8.3.1 Defining your own argument types

Additional arguments can have any of the following types: bool, integer, float, string, list, class/class
instance with no additional work required. You can also define your own custom type, by providing a custom class
in your code that inherits from CustomTypeParam. It must define 2 methods:

1. _validate(self, x: Any): which should raise a ValueError if x is not of the type you expect, and should
also make a call super()._validate(val)

2. from_string(self, y: string) which takes in the command line arg as a string (y) and returns an in-
stance of the type that you want. For example, if your custom type is a tuple, this method should create a
tuple from the input string and return that. An example of a custom type can be seen in our own custom type:
RunIdOrListParam, which accepts a string representing one or more run ids (or run recovery ids) and returns
either a List or a single RunId object (or RunRecoveryId object if appropriate)

8.3.2 Example:

class EvenNumberParam(util.CustomTypeParam):
""" Our custom type param for even numbers """

def _validate(self, val: Any) -> None:
if (not self.allow_None) and val is None:

raise ValueError("Value must not be None")
if val % 2 != 0:

raise ValueError(f"{val} is not an even number")
super()._validate(val) # type: ignore

(continues on next page)

28 Chapter 8. Commandline tools

hi-ml

(continued from previous page)

def from_string(self, x: str) -> int:
return int(x)

class MyScriptConfig(util.AmlRunScriptConfig):
example of a generic param
simple_string: str = param.String(default="")
example of a custom param
even_number = EvenNumberParam(2, doc="your choice of even number")

8.3. Creating your own command line tools 29

hi-ml

30 Chapter 8. Commandline tools

CHAPTER

NINE

DOWNLOADING FROM/ UPLOADING TO AZURE ML

All of the below functions will attempt to find a current workspace, if running in Azure ML, or else will attempt to
locate ‘config.json’ file in the current directory, and its parents. Alternatively, you can specify your own Workspace
object or a path to a file containing the workspace settings.

9.1 Download files from an Azure ML Run

To download all files from an AML Run, given its run id, perform the following:

from pathlib import Path
from health_azure import download_files_from_run_id
run_id = "example_run_id_123"
output_folder = Path("path/to/save")
download_files_from_run_id(run_id, output_folder)

Here, “path_to_save” represents the folder in which we want the downloaded files to be stored. E.g. if your run contains
the files [“abc/def/1.txt”, “abc/2.txt”] and you specify the prefix “abc” and the output_folder “my_outputs”, you’ll end
up with the files [“my_outputs/abc/def/1.txt”, “my_outputs/abc/2.txt”]

If you wish to specify the file name(s) to be downloaded, you can do so with the “prefix” parameter. E.g. pre-
fix=”outputs” will download all files within the “output” folder, if such a folder exists within your Run.

There is an additional parameter, “validate_checksum” which defaults to False. If True, will validate MD5 hash of the
data arriving (in chunks) to that being sent.

Note that if your code is running in a distributed manner, files will only be downloaded onto nodes with local rank = 0.
E.g. if you have 2 nodes each running 4 processes, the file will be downloaded by CPU/GPU 0 on each of the 2 nodes.
All processes will be synchronized to only exit the downloading method once it has completed on all nodes/ranks.

9.2 Downloading checkpoint files from a run

To download checkpoint files from an Azure ML Run, perform the following:

from pathlib import Path
from health_azure import download_checkpoints_from_run_id
download_checkpoints_from_run_id("example_run_id_123", Path("path/to/checkpoint/directory
→˓"))

All files within the checkpoint directory will be downloaded into the folder specified by “path/to/checkpoint_directory”.

31

hi-ml

Since checkpoint files are often large and therefore prone to corruption during download, by default, this function will
validate the MD5 hash of the data downloaded (in chunks) compared to that being sent.

Note that if your code is running in a distributed manner, files will only be downloaded onto nodes with local rank = 0.
E.g. if you have 2 nodes each running 4 processes, the file will be downloaded by CPU/GPU 0 on each of the 2 nodes.
All processes will be synchronized to only exit the downloading method once it has completed on all nodes/ranks.

9.3 Downloading files from an Azure ML Datastore

To download data from an Azure ML Datastore within your Workspace, follow this example:

from pathlib import Path
from health_azure import download_from_datastore
download_from_datastore("datastore_name", "prefix", Path("path/to/output/directory"))

where “prefix” represents the path to the file(s) to be downloaded, relative to the datastore “datastore_name”. Azure will
search for files within the Datastore whose paths begin with this string. If you wish to download multiple files from the
same folder, set equal to that folder’s path within the Datastore. If you wish to download a single file, include both the
path to the folder it resides in, as well as the filename itself. If the relevant file(s) are found, they will be downloaded
to the folder specified by <output_folder>. If this directory does not already exist, it will be created. E.g. if your
datastore contains the paths [“foo/bar/1.txt”, “foo/bar/2.txt”] and you call this function with file_prefix=”foo/bar” and
output_folder=”outputs”, you would end up with the files [“outputs/foo/bar/1.txt”, “outputs/foo/bar/2.txt”]

This function takes additional parameters “overwrite” and “show_progress”. If True, overwrite will overwrite any
existing local files with the same path. If False and there is a duplicate file, it will skip this file. If show_progress is set
to True, the progress of the file download will be visible in the terminal.

9.4 Uploading files to an Azure ML Datastore

To upload data to an Azure ML Datastore within your workspace, perform the following:

from pathlib import Path
from health_azure import upload_to_datastore
upload_to_datastore("datastore_name", Path("path/to/local/data/folder"), Path("path/to/
→˓datastore/folder"))

Where “datastore_name” is the name of the registered Datastore within your workspace that you wish to upload to and
“path/to/datastore/folder” is the relative path within this Datastore that you wish to upload data to. Note that the path to
local data must be a folder, not a single path. The folder name will not be included in the remote path. E.g. if you specify
the local_data_dir=”foo/bar” and that contains the files [“1.txt”, “2.txt”], and you specify the remote_path=”baz”, you
would see the following paths uploaded to your Datastore: [“baz/1.txt”, “baz/2.txt”]

This function takes additional parameters “overwrite” and “show_progress”. If True, overwrite will overwrite any
existing remote files with the same path. If False and there is a duplicate file, it will skip this file. If show_progress is
set to True, the progress of the file upload will be visible in the terminal.

32 Chapter 9. Downloading from/ uploading to Azure ML

CHAPTER

TEN

EXAMPLES

Note: All examples below contain links to sample scripts that are also included in the repository. The experience is
optimized for use on readthedocs. When navigating to the sample scripts on the github UI, you will only see the .rst
file that links to the .py file. To access the .py file, go to the folder that contains the respective .rst file.

10.1 Basic integration

The sample examples/1/sample.py is a script that takes an optional command line argument of a target value and prints
all the prime numbers up to (but not including) this target. It is simply intended to demonstrate a long running operation
that we want to run in Azure. Run it using e.g.

cd examples/1
python sample.py -n 103

The sample examples/2/sample.py shows the minimal modifications to run this in AzureML. Firstly create an AzureML
workspace and download the config file, as explained here. The config file should be placed in the same folder as the
sample script. A sample Conda environment file is supplied. Import the hi-ml package into the current environment.
Finally add the following to the sample script:

from health_azure import submit_to_azure_if_needed
...

def main() -> None:
_ = submit_to_azure_if_needed(

compute_cluster_name="lite-testing-ds2",
wait_for_completion=True,
wait_for_completion_show_output=True)

Replace lite-testing-ds2 with the name of a compute cluster created within the AzureML workspace. If this script
is invoked as the first sample, e.g.

cd examples/2
python sample.py -n 103

then the output will be exactly the same. But if the script is invoked as follows:

cd examples/2
python sample.py -n 103 --azureml

then the function submit_to_azure_if_needed will perform all the required actions to run this script in AzureML
and exit. Note that:

• code after submit_to_azure_if_needed is not run locally, but it is run in AzureML.

33

https://docs.microsoft.com/en-us/azure/machine-learning/how-to-configure-environment
https://pypi.org/project/hi-ml/

hi-ml

• the print statement prints to the AzureML console output and is available in the Output + logs tab of the
experiment in the 70_driver_log.txt if using the old AzureML runtime, or std_log.txt if using the new
AzureML runtime, and can be downloaded from there.

• the command line arguments are passed through (apart from –azureml) when running in AzureML.

• a new file: most_recent_run.txt will be created containing an identifier of this AzureML run.

A sample script examples/2/results.py demonstrates how to programmatically download the driver log file.

10.2 Output files

The sample examples/3/sample.py demonstrates output file handling when running on AzureML. Because each run is
performed in a separate VM or cluster then any file output is not generally preserved. In order to keep the output it
should be written to the outputs folder when running in AzureML. The AzureML infrastructure will preserve this
and it will be available for download from the outputs folder in the Output + logs tab.

Make the following additions:

from health_azure import submit_to_azure_if_needed
run_info = submit_to_azure_if_needed(
...
parser.add_argument("-o", "--output", type=str, default="primes.txt", required=False,

→˓ help="Output file name")
...
output = run_info.output_folder / args.output
output.write_text("\n".join(map(str, primes)))

When running locally submit_to_azure_if_needed will create a subfolder called outputs and then the output can
be written to the file args.output there. When running in AzureML the output will be available in the file args.
output in the Experiment.

A sample script examples/3/results.py demonstrates how to programmatically download the output file.

10.3 Output datasets

The sample examples/4/sample.py demonstrates output dataset handling when running on AzureML.

In this case, the following parameters are added to submit_to_azure_if_needed:

from health_azure import submit_to_azure_if_needed
run_info = submit_to_azure_if_needed(

...
default_datastore="himldatasets",
output_datasets=["himl_sample4_output"],

The default_datastore is required if using the simplest configuration for an output dataset, to just use the blob
container name. There is an alternative that doesn’t require the default_datastore and allows a different datastore
for each dataset:

from health_azure import DatasetConfig, submit_to_azure_if_needed
...
run_info = submit_to_azure_if_needed(

(continues on next page)

34 Chapter 10. Examples

hi-ml

(continued from previous page)

...
output_datasets=[DatasetConfig(name="himl_sample4_output", datastore=

→˓"himldatasets")]

Now the output folder is constructed as follows:

output_folder = run_info.output_datasets[0] or Path("outputs") / "himl_sample4_output
→˓"

output_folder.mkdir(parents=True, exist_ok=True)
output = output_folder / args.output

When running in AzureML run_info.output_datasets[0] will be populated using the new parameter and the
output will be written to that blob storage. When running locally run_info.output_datasets[0] will be None and
a local folder will be created and used.

A sample script examples/4/results.py demonstrates how to programmatically download the output dataset file.

For more details about datasets, see here

10.4 Input datasets

This example trains a simple classifier on a toy dataset, first creating the dataset files and then in a second script training
the classifier.

The script examples/5/inputs.py is provided to prepare the csv files. Run the script to download the Iris dataset and
create two CSV files:

cd examples/5
python inputs.py

The training script examples/5/sample.py is modified from https://github.com/Azure/MachineLearningNotebooks/
blob/master/how-to-use-azureml/ml-frameworks/scikit-learn/train-hyperparameter-tune-deploy-with-sklearn/train_
iris.py to work with input csv files. Start it to train the actual classifier, based on the data files that were just written:

cd examples/5
python sample.py

10.4.1 Including input files in the snapshot

When using very small datafiles (in the order of few MB), the easiest way to get the input data to Azure is to include
them in the set of (source) files that are uploaded to Azure. You can run the dataset creation script on your local
machine, writing the resulting two files to the same folder where your training script is located, and then submit the
training script to AzureML. Because the dataset files are in the same folder, they will automatically be uploaded to
AzureML.

However, it is not ideal to have the input files in the snapshot: The size of the snapshot is limited to 25 MB. It is better
to put the data files into blob storage and use input datasets.

10.4. Input datasets 35

https://github.com/Azure/MachineLearningNotebooks/blob/master/how-to-use-azureml/ml-frameworks/scikit-learn/train-hyperparameter-tune-deploy-with-sklearn/train_iris.py
https://github.com/Azure/MachineLearningNotebooks/blob/master/how-to-use-azureml/ml-frameworks/scikit-learn/train-hyperparameter-tune-deploy-with-sklearn/train_iris.py
https://github.com/Azure/MachineLearningNotebooks/blob/master/how-to-use-azureml/ml-frameworks/scikit-learn/train-hyperparameter-tune-deploy-with-sklearn/train_iris.py

hi-ml

10.4.2 Creating the dataset in AzureML

The suggested way of creating a dataset is to run a script in AzureML that writes an output dataset. This is particularly
important for large datasets, to avoid the usually low bandwith from a local machine to the cloud.

This is shown in examples/6/inputs.py: This script prepares the CSV files in an AzureML run, and writes them to an
output dataset called himl_sample6_input. The relevant code parts are:

run_info = submit_to_azure_if_needed(
compute_cluster_name="lite-testing-ds2",
default_datastore="himldatasets",
output_datasets=["himl_sample6_input"])

The dataset files should be written into this folder:
dataset = run_info.output_datasets[0] or Path("dataset")

Run the script:

cd examples/6
python inputs.py --azureml

You can now modify the training script examples/6/sample.py to use the newly created dataset himl_sample6_input
as an input. To do that, the following parameters are added to submit_to_azure_if_needed:

run_info = submit_to_azure_if_needed(
compute_cluster_name="lite-testing-ds2",
default_datastore="himldatasets",
input_datasets=["himl_sample6_input"])

When running in AzureML, the dataset will be downloaded before running the job. You can access the temporary
folder where the dataset is available like this:

input_folder = run_info.input_datasets[0] or Path("dataset")

The part behind the or statement is only necessary to keep a reasonable behaviour when running outside of AzureML:
When running in AzureML run_info.input_datasets[0] will be populated using input dataset specified in the
call to submit_to_azure_if_needed, and the input will be downloaded from blob storage. When running locally
run_info.input_datasets[0] will be None and a local folder should be populated and used.

The default_datastore is required if using the simplest configuration for an input dataset. There are alternatives
that do not require the default_datastore and allows a different datastore for each dataset, for example:

from health_azure import DatasetConfig, submit_to_azure_if_needed
...
run_info = submit_to_azure_if_needed(

...
input_datasets=[DatasetConfig(name="himl_sample7_input", datastore="himldatasets

→˓"],

For more details about datasets, see here

36 Chapter 10. Examples

hi-ml

10.4.3 Uploading the input files manually

An alternative to writing the dataset in AzureML (as suggested above) is to create them on the local machine, and
upload them manually directly to Azure blob storage.

This is shown in examples/7/inputs.py: This script prepares the CSV files and uploads them to blob storage, in a folder
called himl_sample7_input. Run the script:

cd examples/7
python inputs_via_upload.py

As in the above example, you can now modify the training script examples/7/sample.py to use an input dataset that
has the same name as the folder where the files just got uploaded. In this case, the following parameters are added to
submit_to_azure_if_needed:

run_info = submit_to_azure_if_needed(
...
default_datastore="himldatasets",
input_datasets=["himl_sample7_input"],

10.5 Hyperdrive

The sample examples/8/sample.py demonstrates adding hyperparameter tuning. This shows the same hyperparameter
search as in the AzureML sample.

Make the following additions:

from azureml.core import ScriptRunConfig
from azureml.train.hyperdrive import HyperDriveConfig, PrimaryMetricGoal, choice
from azureml.train.hyperdrive.sampling import RandomParameterSampling

...
def main() -> None:

param_sampling = RandomParameterSampling({
"--kernel": choice('linear', 'rbf', 'poly', 'sigmoid'),
"--penalty": choice(0.5, 1, 1.5)

})

hyperdrive_config = HyperDriveConfig(
run_config=ScriptRunConfig(source_directory=""),
hyperparameter_sampling=param_sampling,
primary_metric_name='Accuracy',
primary_metric_goal=PrimaryMetricGoal.MAXIMIZE,
max_total_runs=12,
max_concurrent_runs=4)

run_info = submit_to_azure_if_needed(
...
hyperdrive_config=hyperdrive_config)

Note that this does not make sense to run locally, it should always be run in AzureML. When invoked with:

cd examples/8
python sample.py --azureml

10.5. Hyperdrive 37

https://github.com/Azure/MachineLearningNotebooks/blob/master/how-to-use-azureml/ml-frameworks/scikit-learn/train-hyperparameter-tune-deploy-with-sklearn/train-hyperparameter-tune-deploy-with-sklearn.ipynb

hi-ml

this will perform a Hyperdrive run in AzureML, i.e. there will be 12 child runs, each randomly drawing from the
parameter sample space. AzureML can plot the metrics from the child runs, but to do that, some small modifications
are required.

Add in:

run = run_info.run
...
args = parser.parse_args()
run.log('Kernel type', np.str(args.kernel))
run.log('Penalty', np.float(args.penalty))
...
print('Accuracy of SVM classifier on test set: {:.2f}'.format(accuracy))
run.log('Accuracy', np.float(accuracy))

and these metrics will be displayed on the child runs tab in the Experiment page on AzureML.

10.6 Controlling when to submit to AzureML and when not

By default, the hi-ml package assumes that you supply a commandline argument --azureml (that can be anywhere on
the commandline) to trigger a submission of the present script to AzureML. If you wish to control it via a different flag,
coming out of your own argument parser, use the submit_to_azureml argument of the function health.azure.
himl.submit_to_azure_if_needed.

10.7 Training with k-fold cross validation in Azure ML

It is possible to create a parent run on Azure ML that is associated with one or more child runs (see here for further
information.) This is useful in circumstances such as k-fold cross-validation, where individual child run perform val-
idation on a different data split. When a HyperDriveRun is created in Azure ML, it follows this same principle and
generates multiple child runs, associated with one parent.

To train with k-fold cross validation using submit_to_azure_if_needed, you must do two things.

1. Call the helper function create_crossval_hyperdrive_config to create an AML HyperDriveConfig object
representing your parent run. It will have one child run for each of the k-fold splits you request, as follows

from health_azure import create_crossval_hyperdrive_config

hyperdrive_config = create_crossval_hyperdrive_config(num_splits,
cross_val_index_arg_

→˓name=cross_val_index_arg_name,
metric_name=metric_name)

where:

• num_splits is the number of k-fold cross validation splits you require

• cross_val_index_arg_name is the name of the argument given to each child run, whose value
denotes which split that child represents (this parameter defaults to ‘cross_validation_split_index’,
in which case, supposing you specified 2 cross validation splits, one would receive the arguments
[‘–cross_validation_split_index’ ‘0’] and the other would receive [‘–cross_validation_split_index’ ‘1’]].
It is up to you to then use these args to retrieve the correct split from your data.

38 Chapter 10. Examples

https://docs.microsoft.com/en-us/azure/machine-learning/how-to-track-monitor-analyze-runs?tabs=python#create-child-runs
https://docs.microsoft.com/en-us/python/api/azureml-train-core/azureml.train.hyperdrive.hyperdriverun?view=azure-ml-py

hi-ml

• metrics_name represents the name of a metric that you will compare your child runs by. NOTE the run
will expect to find this metric, otherwise it will fail as described here You can log this metric in your training
script as follows:

from azureml.core import Run

Example of logging a metric called <metric_name> to an AML Run.
loss = <my_loss_calc>
run_log = Run.get_context()
run_log.log(metric_name, loss)

See the documentation here for further explanation.

2. The hyperdrive_config returned above must be passed into the function submit_to_azure_if_needed as fol-
lows:

run_info = submit_to_azure_if_needed(
...
hyperdrive_config=hyperdrive_config

)

This will create a parent (HyperDrive) Run, with num_cross_validation_split children - each one associ-
ated with a different data split.

10.8 Retrieving the aggregated results of a cross validation/ Hyper-
Drive run

You can retrieve a Pandas DataFrame of the aggregated results from your cross validation run as follows:

from health_azure import aggregate_hyperdrive_metrics

df = aggregate_hyperdrive_metrics(run_id, child_run_arg_name)

where:

• run_id is a string representing the id of your HyperDriveRun. Note that this must be an instance of an AML
HyperDriveRun.

• child_run_arg_name is a string representing the name of the argument given to each child run to denote its
position relative to other child runs (e.g. this arg could equal ‘child_run_index’ - then each of your child runs
should expect to receive the arg ‘–child_run_index’ with a value <= the total number of child runs)

If your HyperDrive run has 2 children, each logging the metrics epoch, accuracy and loss, the result would look like
this:

	0	1
epoch	[1, 2, 3]	[1, 2, 3]
accuracy	[0.7, 0.8, 0.9]	[0.71, 0.82, 0.91]
loss	[0.5, 0.4, 0.3]	[0.45, 0.37, 0.29]

here each column is one of the splits/ child runs, and each row is one of the metrics you have logged to the run.

It is possible to log rows and tables in Azure ML by calling run.log_table and run.log_row respectively. In this case, the
DataFrame will contain a Dictionary entry instead of a list, where the keys are the table columns (or keywords provided

10.8. Retrieving the aggregated results of a cross validation/ HyperDrive run 39

https://docs.microsoft.com/en-us/azure/machine-learning/how-to-tune-hyperparameters#log-metrics-for-hyperparameter-tuning
https://docs.microsoft.com/en-us/azure/machine-learning/how-to-log-view-metrics

hi-ml

to log_row), and the values are the table values. e.g.

| | 0 | 1 ␣
→˓ |
|----------------|--|----------------------------
→˓---------------|
| accuracy_table |{'epoch': [1, 2], 'accuracy': [0.7, 0.8]} | {'epoch': [1, 2], 'accuracy
→˓': [0.8, 0.9]} |

It is also posisble to log plots in Azure ML by calling run.log_image and passing in a matplotlib plot. In this case, the
DataFrame will contain a string representing the path to the artifact that is generated by AML (the saved plot in the
Logs & Outputs pane of your run on the AML portal). E.g.

| | 0 | 1 ␣
→˓ |
|----------------|---|-----------------------------
→˓----------|
| accuracy_plot | aml://artifactId/ExperimentRun/dcid.... | aml://artifactId/
→˓ExperimentRun/dcid...|

10.9 Modifying checkpoints stored in an AzureML run

The script in examples/modify_checkpoint/modify_checkpoint.py shows how checkpoints can be downloaded from an
AzureML run, modified, and the uploaded back to a newly created run.

This can be helpful for example if networks architecture changed, but you do not want to re-train the stored models
with the new code.

The essential bits are:

• Download files from a run via download_files_from_run_id

• Modify the checkpoints

• Create a new run via create_aml_run_object

• Then use Run.upload_folder to upload all modified checkpoints to that new run. From there, they can be
consumed in a follow-up training run again via download_files_from_run_id

40 Chapter 10. Examples

CHAPTER

ELEVEN

SUBMITTING JOBS TO SINGULARITY USING AMULET

PLEASE NOTE: Amulet is only intended for those with access to internal Microsoft compute resources. To access
Amulet you must have an identity associated with the Microsoft tenant. This means you must be a Microsoft employee
or approved external user.

The documentation below describes how to submit hi-ml jobs via Amulet. In addition, we also provide a minimal
sample script that shows the essential parts of a trainer script and how it interacts with Amulet.

11.1 Install Amulet

This package is not included in the hi-ml environment definition, since these instructions only apply to users associated
with the Microsoft tenant. See the instructions for installing.

11.2 Create an Azure ML Storage Account

As stated in the Amulet docs, a Storage Account is required for storing information about your experiments, outputs of
jobs etc. The Storage Account must be of type Storage V2. See the docs for steps on setting up.

11.3 Add your Singularity Workspace

amlt workspace add WORKSPACE_NAME --subscription SUBSCRIPTION_ID --resource-group␣
→˓RESOURCE_GROUP
amlt workspace set-default VC_NAME WORKSPACE_NAME

11.4 Create or checkout a project

As stated in the docs, an Amulet project “usually corresponds to a single research endeavor, e.g. a publication”. Projects
contain experiments which contain jobs. To create a project:

amlt project create <your-project-name> <storage-account-name>

To manage existing projects, use:

amlt project {list|checkout|remove}

41

https://amulet-docs.azurewebsites.net/main/setup.html#install-commands
https://amulet-docs.azurewebsites.net/main/setup.html#azure-storage-account
https://amulet-docs.azurewebsites.net/main/basics/00_create_project.html

hi-ml

11.5 Create a configuration file

A configuration (yaml) file is required to specify your job. For example, to run the HelloWorld model via the hi-ml
runner:

description: Hello World on Singularity

environment:
image: azureml/openmpi3.1.2-cuda10.2-cudnn7-ubuntu18.04:latest
conda_yaml_file: $CONFIG_DIR/hi-ml/supercomputer_environment.yml

code:
local directory of the code. this will be uploaded to the server.
$CONFIG_DIR is expanded to the directory of this config file
local_dir: $CONFIG_DIR

list of jobs to run
jobs:
- name: HelloWorld
sku: G1
command:
- python hi-ml/src/health_ml/runner.py --model=health_cpath.TilesPandaImageNetMIL --

→˓tune_encoder --batch_size=2

Note that SKU here refers to the number of GPUs/CPUs to reserve, and its memory. In this case we have specified 1
GPU. For other options, see the docs.

You can specify multiple jobs here. There are a variety of arguments for controlling factors such as sla_tier, whether
the job is preemptible, the job priority and more. For full details see the docs

11.6 Submit the job to Singularity

amlt run <path-to-config> <experiment-name> -t <target-cluster>

42 Chapter 11. Submitting jobs to Singularity using Amulet

https://amulet-docs.azurewebsites.net/main/config_file.html#jobs
https://amulet-docs.azurewebsites.net/main/config_file.html#jobs

hi-ml

11.7 To run a specific job from a config

If you have multiple jobs specified in your config file, it is possible to submit just one of them as follows:

amlt run <path-to-config> <experiment-name> :<job_name> -t <target-cluster>

11.8 Running a distributed job

There are multiple ways to distribute a job with Amulet. The recommended way is to add the following section to your
config file

env_defaults:
NODES: 1
GPUS: 8
MEM: 32

Then you should update your job definition as follows:

jobs:
- name: <job name>
sku: ${NODES}x${MEM}G${GPUS}
command:
- python <script> <args>
process_count_per_node: ${GPUS}

Additional settings and other methods for distributing can be found here.

For training jobs using PyTorch Lightning, the field process_count_per_node can be set to 0 or omitted altogether.
This indicates to Amulet that the user is responsible for spawning the additional processes. This is the case for PyTorch
Lightning, which will later spawn 1 process per GPU.

11.9 View your job

Once your job is running, you can view it in the Azure ML UI. Alternatively, you can check on the status using the
amlt CLI as follows:

amlt status <exp-name> :<job-name-1>

Similarly, to get the STDOUT from your job, run

amlt logs <exp-name> :<job-name-1>

To view all of your runs in one place, run:

amlt browse

This will launch a Flask app which allows you to view the runs within your project

11.7. To run a specific job from a config 43

https://amulet-docs.azurewebsites.net/main/advanced/51_distributed.html

hi-ml

11.10 Download the /logs outputs of your job

Amulet provides a simple way to download the logs from your job:

amlt results <exp-name> :<job-name-1>

44 Chapter 11. Submitting jobs to Singularity using Amulet

CHAPTER

TWELVE

EXAMPLE TRAINER SCRIPT FOR AMULET

The following example shows a simple PyTorch Lightning trainer script that makes use of the Amulet environment.

You will need a folder that contains the following files:

• A Conda environment definition, like this.

• An Amulet configuration file, like this. The configuration file should live in your repository’s root folder, and to
the Conda environment definition.

• A script that uses the Amulet environment, like this

The script has a large number of comments around the correct use of the Amulet environment - please read them
carefully if you want to base your training code on that example.

To submit this example script as-is via Amulet, follow these steps:

• Check out the hi-ml repository.

• Follow the onboarding instructions in the Amulet overview section, and create an Amulet project in the root folder
of the repository.

• Modify docs/source/amulet/config.yml to point to your storage account: replace the
<storage_account_name> placeholder with the name of your storage account.

• Once Amulet is installed, submit the example jobs with the following command:

amlt run docs/source/amulet/config.yml <experiment_name> -t <name_of_your_compute_target>

45

https://github.com/microsoft/hi-ml

hi-ml

46 Chapter 12. Example Trainer Script for Amulet

CHAPTER

THIRTEEN

LOGGING METRICS WHEN TRAINING MODELS IN AND OUTSIDE
AZUREML

This section describes the basics of logging to AzureML, and how this can be simplified when using PyTorch Lightning.
It also describes helper functions to make logging more consistent across your code.

13.1 Basics

The mechanics of writing metrics to an ML training run inside of AzureML are described here.

Using the hi-ml-azure toolbox, you can simplify that like this:

from health_azure import RUN_CONTEXT

...
RUN_CONTEXT.log(name="name_of_the_metric", value=my_tensor.item())

Similarly you can log strings (via the log_text method) or figures (via the log_image method), see the documenta-
tion.

13.2 Using PyTorch Lightning

The hi-ml toolbox relies on pytorch-lightning for a lot of its functionality. Logging of metrics is described in
detail here

hi-ml provides a Lightning-ready logger object to use with AzureML. You can add that to your trainer as you would
add a Tensorboard logger, and afterwards see all metrics in both your Tensorboard files and in the AzureML UI. This
logger can be added to the Trainer object as follows:

from health_ml.utils import AzureMLLogger
from pytorch_lightning import Trainer
from pytorch_lightning.loggers import TensorBoardLogger

tb_logger = TensorBoardLogger("logs/")
azureml_logger = AzureMLLogger(enable_logging_outside_azure_ml=False)
trainer = Trainer(logger=[tb_logger, azureml_logger])

You do not need to make any changes to your logging code to write to both loggers at the same time. This means that,
if your code correctly writes to Tensorboard in a local run, you can expect the metrics to come out correctly in the
AzureML UI as well after adding the AzureMLLogger.

47

https://docs.microsoft.com/en-us/azure/machine-learning/how-to-log-view-metrics
https://docs.microsoft.com/en-us/azure/machine-learning/how-to-log-view-metrics
https://docs.microsoft.com/en-us/azure/machine-learning/how-to-log-view-metrics
https://pytorch-lightning.readthedocs.io/en/latest/extensions/logging.html

hi-ml

13.3 Logging to AzureML when running outside AzureML

You may still see the need to run some of your training jobs on an individual VM, for example small jobs or for
debugging. Keeping track of the results in those runs can be tricky, and comparing or sharing them even more.

All results that you achieve in such runs outside AzureML can be written straight into AzureML using the
AzureMLLogger. Its behaviour is as follows:

• When instantiated inside a run in AzureML, it will write metrics straight to the present run.

• When instantiated outside an AzureML run, it will create a new Run object that writes its metrics straight through
to AzureML, even though the code is not running in AzureML.

This behaviour is controlled by the enable_logging_outside_azure_ml argument. With the following code snip-
pet, you can to use the AzureMLLogger to write metrics to AzureML when the code is inside or outside AzureML:

from health_ml.utils import AzureMLLogger
from pytorch_lightning.loggers import TensorBoardLogger
from pytorch_lightning import Trainer

tb_logger = TensorBoardLogger("logs/")
azureml_logger = AzureMLLogger(enable_logging_outside_azure_ml=True)
trainer = Trainer(logger=[tb_logger, azureml_logger])

If this is executed on a VM outside an AzureML run, you will see additional information printed to the console like
this:

Writing metrics to run ed52cfac-1b85-42ea-8ebe-2f90de21be6b in experiment azureml_logger.
To check progress, visit this URL: https://ml.azure.com/runs/ed52cfac-1b85-42ea-8ebe-
→˓2f90de21be...

Clicking on the URL will take you to the AzureML web page, where you can inspect the metrics that the run has written
so far.

There are a few points that you should note:

Experiments: Each run in AzureML is associated with an experiment. When executed in an AzureML run, the
AzureMLLogger will know which experiment to write to. Outside AzureML, on your VM, the logger will default
to using an experiment called azureml-logger. This means that runs inside and outside AzureML end up in different
experiments. You can customize this like in the following code snippet, so that the submitted runs and the runs outside
AzureML end up in the same experiment:

from health_azure import submit_to_azure_if_needed
from health_ml.utils import AzureMLLogger
from pytorch_lightning import Trainer

experiment_name = "my_new_architecture"
submit_to_azure_if_needed(compute_cluster_name="nd24",

experiment_name=experiment_name)
azureml_logger = AzureMLLogger(enable_logging_outside_azure_ml=True, experiment_
→˓name=experiment_name)
trainer = Trainer(logger=[azureml_logger])

Snapshots: The run that you are about the create can follow the usual pattern of AzureML runs, and can create a
full snapshot of all code that was used in the experiment. This will greatly improve reproducibility of your experi-
ments. By default, this behaviour is turned off, though. You can provide an additional argument to the logger, like

48 Chapter 13. Logging metrics when training models in and outside AzureML

hi-ml

AzureMLLogger(snapshot_directory='/users/me/code/trainer') to include the given folder in the snap-
shot. In addition, you can place a file called .amlignore to exclude previous results, or large checkpoint files, from
being included in the snapshot (see here for details)

13.4 Making logging consistent when training with PyTorch Lightning

A common problem of training scripts is that the calls to the logging methods tend to run out of sync. The .logmethod
of a LightningModule has a lot of arguments, some of which need to be set correctly when running on multiple GPUs.

To simplify that, there is a function log_on_epoch that turns synchronization across nodes on/off depending on the
number of GPUs, and always forces the metrics to be logged upon epoch completion. Use as follows:

from health_ml.utils import log_on_epoch
from pytorch_lightning import LightningModule

class MyModule(LightningModule):
def training_step(self, *args, **kwargs):

...
loss = my_loss(y_pred, y)
log_on_epoch(self, loss)
return loss

13.4.1 Logging learning rates

Logging learning rates is important for monitoring training, but again this can add overhead. To log learning rates
easily and consistently, we suggest either of two options:

• Add a LearningRateMonitor callback to your trainer, as described here

• Use the hi-ml function log_learning_rate

The log_learning_rate function can be used at any point the training code, like this:

from health_ml.utils import log_learning_rate
from pytorch_lightning import LightningModule

class MyModule(LightningModule):
def training_step(self, *args, **kwargs):

...
log_learning_rate(self, "learning_rate")
loss = my_loss(y_pred, y)
return loss

log_learning_rate will log values from all learning rate schedulers, and all learning rates if a scheduler returns
multiple values. In this example, the logged metric will be learning_rate if there is a single scheduler that outputs
a single LR, or learning_rate/1/0 to indicate the value coming from scheduler index 1, value index 0.

13.4. Making logging consistent when training with PyTorch Lightning 49

https://docs.microsoft.com/en-us/azure/machine-learning/how-to-save-write-experiment-files#storage-limits-of-experiment-snapshots
https://pytorch-lightning.readthedocs.io/en/latest/extensions/generated/pytorch_lightning.callbacks.LearningRateMonitor.html#pytorch_lightning.callbacks.LearningRateMonitor

hi-ml

50 Chapter 13. Logging metrics when training models in and outside AzureML

CHAPTER

FOURTEEN

PERFORMANCE DIAGNOSTICS

The hi-ml toolbox offers several components to integrate with PyTorch Lightning based training workflows:

• The AzureMLProgressBar is a replacement for the default progress bar that the Lightning Trainer uses. Its
output is more suitable for display in an offline setup like AzureML.

• The BatchTimeCallback can be added to the trainer to detect performance issues with data loading.

14.1 AzureMLProgressBar

The standard PyTorch Lightning is well suited for interactive training sessions on a GPU machine, but its output can
get confusing when run inside AzureML. The AzureMLProgressBar class can replace the standard progress bar, and
optionally adds timestamps to each progress event. This makes it easier to later correlate training progress with, for
example, low GPU utilization showing in AzureML’s GPU monitoring.

Here’s a code snippet to add the progress bar to a PyTorch Lightning Trainer object:

from health_ml.utils import AzureMLProgressBar
from pytorch_lightning import Trainer

progress = AzureMLProgressBar(refresh_rate=100, print_timestamp=True)
trainer = Trainer(callbacks=[progress])

This produces progress information like this:

2021-10-20T06:06:07Z Training epoch 18 (step 94): 5/5 (100%) completed. 00:00 elapsed,
→˓ total epoch time ~ 00:00
2021-10-20T06:06:07Z Validation epoch 18: 2/2 (100%) completed. 00:00 elapsed, total␣
→˓epoch time ~ 00:00
2021-10-20T06:06:07Z Training epoch 19 (step 99): 5/5 (100%) completed. 00:00 elapsed,
→˓ total epoch time ~ 00:00
...

51

hi-ml

14.2 BatchTimeCallback

This callback can help diagnose issues with low performance of data loading. It captures the time between the end of a
training or validation step, and the start of the next step. This is often indicative of the time it takes to retrieve the next
batch of data: When the data loaders are not performant enough, this time increases.

The BatchTimeCallback will detect minibatches where the estimated data loading time is too high, and print alerts.
These alerts will be printed at most 5 times per epoch, for a maximum of 3 epochs, to avoid cluttering the output.

Note that it is common for the first minibatch of data in an epoch to take a long time to load, because data loader
processes need to spin up.

The callback will log a set of metrics:

• timing/train/batch_time [sec] avg and timing/train/batch_time [sec] max: Average and max-
imum time that it takes for batches to train/validate

• timing/train/batch_loading_over_threshold [sec] is the total time wasted per epoch in waiting for
the next batch of data. This is computed by looking at all batches where the batch loading time was over the
threshold max_batch_load_time_seconds (that is set in the constructor of the callback), and totalling the
batch loading time for those batches.

• timing/train/epoch_time [sec] is the time for an epoch to complete.

14.2.1 Caveats

• In distributed training, the performance metrics will be collected at rank 0 only.

• The time between the end of a batch and the start of the next batch is also impacted by other callbacks. If you
have callbacks that are particularly expensive to run, for example because they actually have their own model
training, the results of the BatchTimeCallback may be misleading.

14.2.2 Usage example

from health_ml.utils import BatchTimeCallback
from pytorch_lightning import Trainer

batchtime = BatchTimeCallback(max_batch_load_time_seconds=0.5)
trainer = Trainer(callbacks=[batchtime])

This would produce output like this:

Epoch 18 training: Loaded the first minibatch of data in 0.00 sec.
Epoch 18 validation: Loaded the first minibatch of data in 0.00 sec.
Epoch 18 training took 0.02sec, of which waiting for data took 0.01 sec total.
Epoch 18 validation took 0.00sec, of which waiting for data took 0.00 sec total.

52 Chapter 14. Performance Diagnostics

CHAPTER

FIFTEEN

RUNNING ML EXPERIMENTS WITH HI-ML

The hi-ml toolbox is capable of training any PyTorch Lighting (PL) model inside of AzureML, making use of these
features:

• Training on a local GPU machine or inside of AzureML without code changes

• Working with different models in the same codebase, and selecting one by name

• Distributed training in AzureML

• Logging via AzureML’s native capabilities

• Evaluation of the trained model on new datasets

This can be used by invoking the hi-ml runner and providing the name of the container class, like this: himl-runner
--model=MyContainer.

There is a fully working example HelloContainer, that implements a simple 1-dimensional regression model from data
stored in a CSV file. You can run that from the command line by himl-runner --model=HelloWorld.

15.1 Specifying the model to run

The --model argument specifies the name of a class that should be used for model training. The class needs to be a
subclass of LightningContainer, see below. There are different ways of telling the runner where to find that class:

• If just providing a single class name, like --model=HelloWorld, the class is expected somewhere in the
health_ml.configs namespace. It can be in any module/folder inside of that namespace.

• If the class is outside of the health_ml.configs (as would be normal if using the himl-runner from a pack-
age), you need to provide some “hints” where to start searching. It is enough to provide the start of the names-
pace string: for example, --model health_cpath.PandaImageNetMIL is effectively telling the runner to
search for the PandaImageNetMIL class anywhere in the health_cpath namespace. You can think of this as
health_cpath.*.PandaImageNetMIL

15.2 Running ML experiments in Azure ML

To train in AzureML, use the flag --cluster to specify the name of the cluster in your Workspace that you want to
submit the job to. So the whole command would look like:

himl-runner --model=HelloWorld --cluster=my_cluster_name

53

https://github.com/microsoft/hi-ml/blob/main/hi-ml/src/health_ml/configs/hello_world.py

hi-ml

You can also specify --num_nodes if you wish to distribute the model training.

When starting the runner, you need to do that from a directory that contains all the code that your experiment needs: The
current working directory will be used as the root of all data that will be copied to AzureML to run your experiment.
(the only exception to this rule is if you start the runner from within an enlistment of the HI-ML GitHub repository).

AzureML needs to know which Python/Conda environment it should use. For that, the runner needs a file
environment.yml that contains a Conda environment definition. This file needs to be present either in the current
working directory or one of its parents. To specify a Conda environment that is located elsewhere, you can use

himl-runner --model=HelloWorld --cluster=my_cluster_name --conda_env=/my/folder/to/
→˓special_environment.yml

15.3 Setup - creating your model config file

In order to use these capabilities, you need to implement a class deriving from health_ml.lightning_container.
LightningContainer. This class encapsulates everything that is needed for training with PyTorch Lightning:

For example:

class MyContainer(LightningContainer):
def __init__(self):

super().__init__()
self.azure_datasets = ["folder_name_in_azure_blob_storage"]
self.local_datasets = [Path("/some/local/path")]
self.max_epochs = 42

def create_model(self) -> LightningModule:
return MyLightningModel()

def get_data_module(self) -> LightningDataModule:
return MyDataModule(root_path=self.local_dataset)

The create_model method needs to return a subclass of PyTorch Lightning’s LightningModule, that has all the usual
PyTorch Lightning methods required for training, like the training_step and forward methods. E.g:

class MyLightningModel(LightningModule):
def __init__(self):

self.layer = ...
def training_step(self, *args, **kwargs):

...
def forward(self, *args, **kwargs):

...
def configure_optimizers(self):

...
def test_step(self, *args, **kwargs):

...

The get_data_module method of the container needs to return a DataModule (inheriting from a PyTorch Lightning
DataModule) which contains all of the logic for downloading, preparing and splitting your dataset, as well as methods
for wrapping the train, val and test datasets respectively with DataLoaders. E.g:

54 Chapter 15. Running ML experiments with hi-ml

https://pytorch-lightning.readthedocs.io/en/latest/common/lightning_module.html?highlight=lightningmodule
https://pytorch-lightning.readthedocs.io/en/latest/extensions/datamodules.html
https://pytorch-lightning.readthedocs.io/en/latest/extensions/datamodules.html
https://pytorch.org/docs/stable/data.html#torch.utils.data.DataLoader

hi-ml

class MyDataModule(LightningDataModule):
def __init__(self, root_path: Path):

All data should be read from the folder given in self.root_path
self.root_path = root_path

def train_dataloader(self, *args, **kwargs) -> DataLoader:
The data should be read off self.root_path
train_dataset = ...
return DataLoader(train_dataset, batch_size=5, num_workers=5)

def val_dataloader(self, *args, **kwargs) -> DataLoader:
The data should be read off self.root_path
val_dataset = ...
return DataLoader(val_dataset, batch_size=5, num_workers=5)

def test_dataloader(self, *args, **kwargs) -> DataLoader:
The data should be read off self.root_path
test_dataset = ...
return DataLoader(test_dataset, batch_size=5, num_workers=5)

So, the full file would look like:

from pathlib import Path
from torch.utils.data import DataLoader
from pytorch_lightning import LightningModule, LightningDataModule
from health_ml.lightning_container import LightningContainer

class MyLightningModel(LightningModule):
def __init__(self):

self.layer = ...
def training_step(self, *args, **kwargs):

...
def forward(self, *args, **kwargs):

...
def configure_optimizers(self):

...
def test_step(self, *args, **kwargs):

...

class MyDataModule(LightningDataModule):
def __init__(self, root_path: Path):

All data should be read from the folder given in self.root_path
self.root_path = root_path

def train_dataloader(self, *args, **kwargs) -> DataLoader:
The data should be read off self.root_path
train_dataset = ...
return DataLoader(train_dataset, batch_size=5, num_workers=5)

def val_dataloader(self, *args, **kwargs) -> DataLoader:
The data should be read off self.root_path
val_dataset = ...
return DataLoader(val_dataset, batch_size=5, num_workers=5)

def test_dataloader(self, *args, **kwargs) -> DataLoader:
The data should be read off self.root_path
test_dataset = ...
return DataLoader(test_dataset, batch_size=5, num_workers=5)

(continues on next page)

15.3. Setup - creating your model config file 55

hi-ml

(continued from previous page)

class MyContainer(LightningContainer):
def __init__(self):

super().__init__()
self.azure_datasets = ["folder_name_in_azure_blob_storage"]
self.local_datasets = [Path("/some/local/path")]
self.max_epochs = 42

def create_model(self) -> LightningModule:
return MyLightningModel()

def get_data_module(self) -> LightningDataModule:
return MyDataModule(root_path=self.local_dataset)

By default, config files will be looked for in the folder “health_ml.configs”. To specify config files that live elsewhere,
use a fully qualified name for the parameter --model - e.g. “MyModule.Configs.my_config.py”

15.4 Outputting files during training

The Lightning model returned by create_model needs to write its output files to the current working directory. When
running inside of AzureML, the output folders will be directly under the project root. If not running inside AzureML,
a folder with a timestamp will be created for all outputs and logs.

When running in AzureML, the folder structure will be set up such that all files written to the current working directory
are later uploaded to Azure blob storage at the end of the AzureML job. The files will also be later available via the
AzureML UI.

15.5 Trainer arguments

All arguments that control the PyTorch Lightning Trainer object are defined in the class TrainerParams. A
LightningContainer object inherits from this class. The most essential one is the max_epochs field, which controls
the max_epochs argument of the Trainer.

For example:

from pytorch_lightning import LightningModule, LightningDataModule
from health_ml.lightning_container import LightningContainer

class MyContainer(LightningContainer):
def __init__(self):

super().__init__()
self.max_epochs = 42

def create_model(self) -> LightningModule:
return MyLightningModel()

def get_data_module(self) -> LightningDataModule:
return MyDataModule(root_path=self.local_dataset)

56 Chapter 15. Running ML experiments with hi-ml

hi-ml

15.5.1 Optimizer and LR scheduler arguments

To the optimizer and LR scheduler: the Lightning model returned by create_model should define its own
configure_optimizers method, with the same signature as LightningModule.configure_optimizers, and re-
turns a tuple containing the Optimizer and LRScheduler objects

15.6 Run inference with a pretrained model

You can use the hi-ml-runner in inference mode only by switching the --run_inference_only flag on and specifying
the model weights by setting --src_checkpoint argument. With this flag, the model will be evaluated on the test set
only. There is also an option for evaluating the model an a full dataset, described further below.

15.6.1 Specifying the checkpoint to use

When running inference on a trained model, you need to provide a model checkpoint that should be used. This is done
via the --src_checkpoint argument. This supports three types of checkpoints:

• A local path where the checkpoint is stored --src_checkpoint=local/path/to/my_checkpoint/model.
ckpt

• A remote URL from where to download the weights --src_checkpoint=https://my_checkpoint_url.
com/model.ckpt

• An AzureML run id where checkpoints are saved in outputs/checkpoints. For this specific use
case, you can experiment with different checkpoints by setting --src_checkpoint according to the for-
mat <azureml_run_id>:<optional/custom/path/to/checkpoints/><filename.ckpt>. If no cus-
tom path is provided (e.g., --src_checkpoint=AzureML_run_id:best.ckpt), we assume the checkpoints
to be saved in the default checkpoints folder outputs/checkpoints. If no filename is provided (e.g.,
--src_checkpoint=AzureML_run_id), the last epoch checkpoint outputs/checkpoints/last.ckpt will
be loaded.

Refer to Checkpoints Utils for more details on how checkpoints are parsed.

15.6.2 Running inference on the test set

When supplying the flag --run_inference_only on the commandline, no model training will be run, and only
inference on the test set will be done:

• The model weights will be loaded from the location specified by --src_checkpoint

• A PyTorch Lightining Trainer object will be instantiated.

• The test set will be read out from the data module specified by the get_data_module method of the
LightningContainer object.

• The model will be evaluated on the test set, by running trainer.test. Any special logic to use during the test
step will need to be added to the model’s test_step method.

Running the following command line will run inference using the MyContainer model with weights from the check-
point saved in the AzureMl run MyContainer_XXXX_yyyy at the best validation loss epoch /outputs/checkpoints/
best_val_loss.ckpt.

himl-runner --model=Mycontainer --run_inference_only --src_checkpoint=MyContainer_XXXX_
→˓yyyy:best_val_loss.ckpt

15.6. Run inference with a pretrained model 57

hi-ml

15.6.3 Running inference on a full dataset

When supplying the flag --mode=eval_full on the commandline, no model training will be run, and the model
will be evaluated on a dataset different from the training/validation/test dataset. This dataset is loaded via the
get_eval_data_module method of the container.

• The model weights will be loaded from the location specified by --src_checkpoint

• A PyTorch Lightining Trainer object will be instantiated.

• The test set will be read out from the data module specified by the get_eval_data_module method of the
LightningContainer object. The data module itself can read data from a mounted Azure dataset, which will
be made availabe for the container at the path self.local_datasets. In a typical use-case, all the data in that
dataset will be put into the test_dataloader field of the data module.

• The model will be evaluated on the test set, by running trainer.test. Any special logic to use during the test
step will need to added to the model’s test_step method.

Running the following command line will run inference using the MyContainer model with weights from the check-
point saved in the AzureMl run MyContainer_XXXX_yyyy at the best validation loss epoch /outputs/checkpoints/
best_val_loss.ckpt.

himl-runner --model=Mycontainer --src_checkpoint=MyContainer_XXXX_yyyy:best_val_loss.
→˓ckpt --mode=eval_full --azure_datasets=my_new_dataset

The example code snippet here shows how to add a method that reads the inference dataset. In this example, we
assume that the MyDataModule class has an argument splits that specifies the fraction of data to go into the training,
validation, and test data loaders.

class MyContainer(LightningContainer):
def __init__(self):

super().__init__()
self.azure_datasets = ["folder_name_in_azure_blob_storage"]
self.local_datasets = [Path("/some/local/path")]
self.max_epochs = 42

def create_model(self) -> LightningModule:
return MyLightningModel()

def get_data_module(self) -> LightningDataModule:
return MyDataModule(root_path=self.local_dataset, splits=(0.7, 0.2, 0.1))

def get_eval_data_module(self) -> LightningDataModule:
return MyDataModule(root_path=self.local_dataset, splits=(0.0, 0.0, 1.0))

15.7 Resume training from a given checkpoint

Analogously, one can resume training by setting --src_checkpoint and --resume_training to train a model
longer. The pytorch lightning trainer will initialize the lightning module from the given checkpoint corresponding to
the best validation loss epoch as set in the following comandline.

himl-runner --model=Mycontainer --cluster=my_cluster_name --src_checkpoint=MyContainer_
→˓XXXX_yyyy:best_val_loss.ckpt --resume_training

58 Chapter 15. Running ML experiments with hi-ml

hi-ml

Warning: When resuming training, one should make sure to set container.max_epochs greater than the last epoch
of the specified checkpoint. A misconfiguration exception will be raised otherwise:

pytorch_lightning.utilities.exceptions.MisconfigurationException: You restored a␣
→˓checkpoint with current_epoch=19, but you have set Trainer(max_epochs=4).

15.8 Logging to AzureML when running outside AzureML

The runner offers the ability to log metrics to AzureML, even if the present training is not running inside of AzureML.
This adds an additional level of traceability for runs on GPU VMs, where there is otherwise no record of any past
training.

You can trigger this behaviour by specifying the --log_from_vm flag. For the HelloWorld model, this will look like:

himl-runner --model=HelloWorld --log_from_vm

For logging to work, you need have a config.json file in the current working directory (or one of its parent folders)
that specifies the AzureML workspace itself. When starting the runner, you will be asked to authenticate to AzureML.

There are two additional flags that can be used to control the logging behaviour:

• The --experiment flag sets which AzureML experiment to log to. By default, the experiment name will be the
name of the model class (HelloWorld in the above example).

• The --tag flag sets the display name for the AzureML run. You can use that to give your run a memorable name,
and later easily find it in the AzureML UI.

The following command will log to the experiment my_experiment, in a run that is labelled my_first_run in the
UI:

himl-runner --model=HelloWorld --log_from_vm --experiment=my_experiment --tag=my_first_
→˓run

15.9 Starting experiments with different seeds

To assess the variability of metrics, it is often useful to run the same experiment multiple times with different seeds.
There is a built-in functionality of the runner to do this. When adding the commandline flag --different_seeds=3,
your experiment will get run 3 times with seeds 0, 1 and 2. This is equivalent to starting the runner with arguments
--random_seed=0, --random_seed=1 and --random_seed=2.

These runs will be started in parallel in AzureML via the HyperDrive framework. It is not possible to run with different
seeds on a local machine, other than by manually starting runs with --random_seed=0 etc.

15.8. Logging to AzureML when running outside AzureML 59

hi-ml

15.10 Common problems with running in AML

1. "Your total snapshot size exceeds the limit <SNAPSHOT_LIMIT>". Cause: The size of your
source directory is larger than the limit that AML sets for snapshots. Solution: check for cache files, log files
or other files that are not necessary for running your experiment and add them to a .amlignore file in the root
directory. Alternatively, you can see Azure ML documentation for instructions on increasing this limit, although
it will make your jobs slower.

2. "FileNotFoundError". Possible cause: Symlinked files. Azure ML SDK v2 will resolve the symlink and
attempt to upload the resolved file. Solution: Remove symlinks from any files that should be uploaded to Azure
ML.

60 Chapter 15. Running ML experiments with hi-ml

CHAPTER

SIXTEEN

CHECKPOINT UTILS

Hi-ml toolbox offers different utilities to parse and download pretrained checkpoints that help you abstract checkpoint
downloading from different sources. Refer to CheckpointParser for more details on the supported checkpoints format.
Here’s how you can use the checkpoint parser depending on the source:

• For a local path, simply pass it as shown below. The parser will further check if the provided path exists:

from health_ml.utils.checpoint_utils import CheckpointParser

download_dir = 'outputs/checkpoints'
checkpoint_parser = CheckpointParser(checkpoint='local/path/to/my_checkpoint/model.ckpt')
print('Checkpoint', checkpoint_parser.checkpoint, 'is a local file', checkpoint_parser.
→˓is_local_file)
local_file = parser.get_or_download_checkpoint(download_dir)

• To download a checkpoint from a URL:

from health_ml.utils.checpoint_utils import CheckpointParser, MODEL_WEIGHTS_DIR_NAME

download_dir = 'outputs/checkpoints'
checkpoint_parser = CheckpointParser('https://my_checkpoint_url.com/model.ckpt')
print('Checkpoint', checkpoint_parser.checkpoint, 'is a URL', checkpoint_parser.is_url)
will dowload the checkpoint to download_dir/MODEL_WEIGHTS_DIR_NAME
path_to_ckpt = checkpoint_parser.get_or_download_checkpoint(download_dir)

• Finally checkpoints from an Azure ML runs can be reused by providing an id in this format
<AzureML_run_id>:<optional/custom/path/to/checkpoints/><filename.ckpt>. If no custom
path is provided (e.g., <AzureML_run_id>:<filename.ckpt>) the checkpoint will be downloaded
from the default checkpoint folder (e.g., outputs/checkpoints) If no filename is provided, (e.g.,
src_checkpoint=<AzureML_run_id>) the latest checkpoint will be downloaded (e.g., last.ckpt).

from health_ml.utils.checpoint_utils import CheckpointParser

checkpoint_parser = CheckpointParser('AzureML_run_id:best.ckpt')
print('Checkpoint', checkpoint_parser.checkpoint, 'is a AML run', checkpoint_parser.is_
→˓aml_run_id)
path_azure_ml_ckpt = checkpoint_parser.get_or_download_checkpoint(download_dir)

If the Azure ML run is in a different workspace, a temporary SAS URL to download the checkpoint can be generated
as follow:

cd hi-ml-cpath
python src/health_cpath/scripts/generate_checkpoint_url.py --run_id=AzureML_run_id:best_
→˓val_loss.ckpt --expiry_days=10 (continues on next page)

61

https://github.com/microsoft/hi-ml/blob/main/hi-ml/src/health_ml/utils/checkpoint_utils.py#L238

hi-ml

(continued from previous page)

N.B: config.json should correspond to the original workspace where the AML run lives.

16.1 Use cases

CheckpointParser is used to specify a src_checkpoint to resume training from a given checkpoint, or run inference
with a pretrained model, as well as ssl_checkpoint for computation pathology self supervised pretrained encoders.

62 Chapter 16. Checkpoint Utils

https://github.com/microsoft/hi-ml/blob/main/docs/source/runner.md#L238
https://github.com/microsoft/hi-ml/blob/main/docs/source/runner.md#L215
https://github.com/microsoft/hi-ml/blob/main/docs/source/runner.md#L215
https://github.com/microsoft/hi-ml/blob/main/hi-ml-cpath/src/health_cpath/utils/deepmil_utils.py#L62

CHAPTER

SEVENTEEN

HI-ML TOOLS FOR COMPUTATIONAL PATHOLOGY

The directory hi-ml-cpath contains code for runnning experiments in Computational Pathology.

The tools for computational pathology are best used directly from the Git repository. You can also use the hi-ml-cpath
PyPi package to re-use the code in your own projects, for example the deep learning architectures.

17.1 Setting up your computer

Please follow the instructions in README to set up your local Python environment.

17.2 Onboarding to Azure

Please follow the instructions here to create an AzureML workspace if you don’t have one yet. You will also need to
download the workspace configuration file, as described here, so that your code knows which workspace to access.

17.3 Creating datasets

In our example models, we are working with two public datasets, PANDA and TCGA-Crck.

Please follow the detailed instructions to download and prepare these datasets in Azure.

17.4 Training models

• Train a DeepMIL model with an ImageNet encoder on the PANDA dataset (whole slides)

• Train an SSL encoder on the TCGA-Crck dataset (tiles)

63

https://github.com/microsoft/hi-ml/tree/main/hi-ml-cpath
https://pypi.org/project/hi-ml-cpath
https://pypi.org/project/hi-ml-cpath
https://github.com/microsoft/hi-ml/blob/main/hi-ml-cpath/README.md
azure_setup.md#accessing-the-workspace
https://panda.grand-challenge.org/
https://zenodo.org/record/2530835

hi-ml

17.5 Visualizing data and results in Digital Slide Archive DSA

• Setting up DSA

• Using DSA to look at data and model results

17.6 New Model configurations

To define your own model configuration, place a class definition in the directory health_cpath.configs. The class
should inherit from a LightningContainer. As an example, please check the HelloWorld model or the base class for the
MIL models.

17.7 Mount datasets

If you would like to inspect or analyze the datasets that are stored in Azure Blob Storage, you can either download
them or mount them. “Mounting” here means that the dataset will be loaded on-demand over the network (see also the
docs). This is ideal if you expect that you will only need a small number of files, or if the disk of your machine is too
small to download the full dataset.

You can mount the dataset by executing this script in <root>/hi-ml-cpath:

python src/histopathology/scripts/mount_azure_dataset.py --dataset_id PANDA

After a few seconds, this may bring up a browser to authenticate you in Azure, and let you access the AzureML
workspace that you chose by downloading the config.json file. If you get an error message saying that authentication
failed (error message contains “The token is not yet valid (nbf)”), please ensure that your system’s time is set correctly
and then try again. On WSL, you can use sudo hwclock -s.

Upon success, the script will print out:

Dataset PANDA will be mounted at /tmp/datasets/PANDA.

64 Chapter 17. HI-ML Tools for Computational Pathology

./dsa.md#azure-deployment
./dsa.md#visualizing-azure-machine-learning-results
https://github.com/microsoft/hi-ml/blob/39911d217c919d8213ad36c9c776f69369d98509/hi-ml/src/health_ml/lightning_container.py#L24
https://github.com/microsoft/hi-ml/blob/0793cbd1a874920d04b0a8f1298a7a112cfd712c/hi-ml/src/health_ml/configs/hello_world.py#L232
https://github.com/microsoft/hi-ml/blob/1d96c9bcdb326ad4d145ab082f45a2116d776a76/hi-ml-cpath/src/histopathology/configs/classification/BaseMIL.py#L39
https://github.com/microsoft/hi-ml/blob/1d96c9bcdb326ad4d145ab082f45a2116d776a76/hi-ml-cpath/src/histopathology/configs/classification/BaseMIL.py#L39
https://docs.microsoft.com/en-us/azure/machine-learning/how-to-train-with-datasets#mount-vs-download
https://docs.microsoft.com/en-us/azure/machine-learning/how-to-train-with-datasets#mount-vs-download

CHAPTER

EIGHTEEN

USING PUBLIC DATASETS PANDA AND TCGA-CRCK

18.1 Setting up your storage account and tools

Your Azure account needs to have permissions to write to the storage account. You need to have, for example, “Storage
Blob Data Contributor” permissions.

Your storage account should have a container called datasets. Verify in the Azure Portal that this container exists:
You can do that by going to the “Containers” section in the left-hand navigation. If there is no such container, create
one with the “+ Container” button.

To upload datasets to Azure, we recommend using azcopy. You will first need to log in, by calling azcopy login.
Follow the instructions at the prompt.

18.2 PANDA Dataset

The PANDA dataset was released with the Prostate cANcer graDe Assessment (PANDA) Challenge. The dataset is
available from Kaggle. To get access to the dataset, you need to register with Kaggle, then press “Download all”. This
will download a 200GB ZIP file.

18.2.1 Uploading

Now unzip the ZIP file. Then rename the folder in which the files reside to PANDA. To double-check, there should now
be a file PANDA/train.csv in your current directory.

head PANDA/train.csv # just to check if we are in the right folder
azcopy copy PANDA https://<your_storage_account>.blob.core.windows.net/datasets/ --
→˓recursive

18.3 TCGA-Crck Dataset

This dataset contains histological images from patients with colorectal cancer, available from here.

To download and prepare the dataset, please run the following commands in a Linux shell in the root folder of the git
repository. To prepare:

• In the last statement, where we upload the full dataset to Azure, replace <your_storage_account> with the
name of your Azure storage account.

65

http://aka.ms/azcopy
https://panda.grand-challenge.org/
https://www.kaggle.com/c/prostate-cancer-grade-assessment/data
https://zenodo.org/record/2530835

hi-ml

• For Python to pick up the paths in hi-ml-cpath/src/histopathology/scripts/tcga_dataset_prep.py,
you need to add the `hi

Note: Depending on the speed of your internet connection, this script can run for several hours because it downloads a
total of more than 20GB of files. It is advantageous to run the script in a Virtual Machine in Azure (downloading can
be easily automated because no authentication is required).

mkdir TCGA-Crck
cd TCGA-Crck
Download the files and unzip into folder broken down by Train/Test
for file in CRC_DX_TRAIN_MSIMUT.zip CRC_DX_TRAIN_MSS.zip
do

wget https://zenodo.org/record/2530835/files/$file
unzip $file -d CRC_DX_TRAIN
rm $file

done
for file in CRC_DX_TEST_MSIMUT.zip CRC_DX_TEST_MSS.zip
do

wget https://zenodo.org/record/2530835/files/$file
unzip $file -d CRC_DX_TEST
rm $file

done
Create a summary file dataset.csv with all file paths and class labels
cd ..
export PYTHONPATH=`pwd`/hi-ml-cpath/src
python hi-ml-cpath/src/histopathology/scripts/tcga_dataset_prep.py
Upload
azcopy copy TCGA-Crck https://<your_storage_account>.blob.core.windows.net/datasets/ --
→˓recursive

18.4 Making your storage account accessible to AzureML

As a last step, you need to ensure that AzureML has access to your storage account. For that, you need to create a
datastore. A datastore is an abstraction layer on top of the plain storage account, where AzureML stores an account
key or access token that allows it to later download the data to the training machine.

To create the datastore, please follow the instructions here. Once the datastore is created, mark it as the default datastore.

66 Chapter 18. Using Public Datasets PANDA and TCGA-Crck

https://docs.microsoft.com/en-us/azure/machine-learning/how-to-datastore?tabs=cli-identity-based-access%2Ccli-adls-identity-based-access%2Ccli-azfiles-account-key%2Ccli-adlsgen1-identity-based-access

CHAPTER

NINETEEN

DEEPMIL MODEL FOR TUMOR GRADING ON PANDA DATASET

19.1 Background

The repository contains the configuration for training Deep Multiple Instance Learning (DeepMIL) models for ISUP
score prediction on the PANDA challenge dataset. The models are developed to reproduce the results described in
Myronenko et al. 2021 and the example in the Project-MONAI tutorial.

A ResNet50 encoder that was pre-trained on ImageNet is downloaded on-the-fly (from here at the start of the training
run.

19.2 Preparations

Please follow the instructions in the Readme file to create a Conda environment and activate it, and the instructions to
set up Azure.

You will also need to run the dataset preparations for the PANDA dataset, as described here.

19.3 Running the model as-is

If you have a GPU available, you can run training on that machine, by executing in <root>/hi-ml-cpath:

conda activate HimlHisto
python ../hi-ml/src/health_ml/runner.py --model health_cpath.
→˓SlidesPandaImageNetMILBenchmark

Running the model will automatically mount (download on-the-fly) the PANDA dataset from Azure. To enable that,
you will be asked to log into Azure a few seconds after the start of the script. This will either pop up a browser window
automatically, or give you a prompt on the console to open the browser.

Once the authentication is completed, it will access the AzureML workspace that you chose by downloading the
config.json file. If you get an error message saying that authentication failed, “The token is not yet valid (nbf)”,
please ensure that your system’s time is set correctly (on WSL, use sudo hwclock -s) and then try again.

However, the GPU demand for this model is rather high. We recommend running in AzureML, on a GPU
compute cluster. You can run the training in the cloud by simply appending name of the compute cluster,
--cluster=<your_cluster_name>. In addition, you can turn on fine-tuning of the encoder, which will improve
the results further:

67

https://www.kaggle.com/c/prostate-cancer-grade-assessment?msclkid=63cd71d8cf6511ec8191222e2876cfec
https://link.springer.com/chapter/10.1007/978-3-030-87237-3_32
https://github.com/Project-MONAI/tutorials/blob/master/pathology/multiple_instance_learning/panda_mil_train_evaluate_pytorch_gpu.py
https://download.pytorch.org/models/
../hi-ml-cpath/README.md#setting-up-python
../hi-ml-cpath/README.md/README.md#setting-up-azureml
public_datasets.md#panda-dataset

hi-ml

conda activate HimlHisto
python ../hi-ml/src/health_ml/runner.py --model health_cpath.
→˓SlidesPandaImageNetMILBenchmark --tune_encoder --cluster=<your_cluster_name>

Then the script will output “Successfully queued run number . . . ” and a line prefixed “Run URL: . . . ”. Open that URL
to view the submitted run in AzureML, view progress, metrics, etc.

19.4 Expected results

The best runs so far uses Transformer Pooling layer similar to the one implemented in Myronenko et. al 2021
(pool_type=TransformerPoolingBenchmark.__name__), in combintation with fine-tuning the encoder.

SlidesPandaImageNetMIL model trained with fine-tuning, cross validation metrics (mean ± std):

• Validation accuracy: 0.7828 ± 0.0037

• Validation AUROC: 0.9473 ± 0.002

• Validation QWK: 0.8793 ± 0.0074

For internal reference, this was run HD_0e805b91-319d-4fde-8bc3-1cea3a6d08dd on innereye4ws.

19.5 Model variants

Six different pooling layers can be used by changing parameter pool_type in the configuration file, or chosen on the
commandline or from CLI. Available pooling layers include:

• pool_type=AttentionLayer.__name__: Attention layer from Ilse et al. 2018

• pool_type=GatedAttentionLayer.__name__: Gated attention layer from Ilse et al. 2018

• pool_type=MaxPoolingLayer.__name__: Max pooling layer returns frequency normalized weights and the
maximum feature vector over the first axis

• pool_type=MeanPoolingLayer.__name__: Mean pooling layer returns uniform weights and the average fea-
ture vector over the first axis

• pool_type=TransformerPooling.__name__: Transformer pooling layer

• pool_type=TransformerPoolingBenchmark.__name__: Transformer pooling layer used in Myronenko et
al. 2021

Use the optional runner argument --mount_in_azureml to mount the PANDA dataset on AzureML, instead of down-
loading it. This will mean that the job starts faster, but may not run at maximum speed because of network bottlenecks.

19.6 Cross-validation

To use cross-validation, supply the additional commandline flag --crossval_count=5 for 5-fold cross-validation,
like:

python ../hi-ml/src/health_ml/runner.py --model health_cpath.
→˓idesPandaImageNetMILBenchmark --crossval_count=5 --cluster=<your_cluster_name>

68 Chapter 19. DeepMIL model for tumor grading on PANDA dataset

https://arxiv.org/abs/1802.04712?msclkid=2db09d14d12711ecb63134a1dec7b03e
https://arxiv.org/abs/1802.04712?msclkid=2db09d14d12711ecb63134a1dec7b03e
https://link.springer.com/chapter/10.1007/978-3-030-87237-3_32
https://link.springer.com/chapter/10.1007/978-3-030-87237-3_32

hi-ml

Cross-validation will start 5 training runs in parallel. For this reason, cross-validation can only be used in AzureML.

To compute aggregated metrics of the hyperdrive run in Azure ML, replace the run_id in hi-ml-cpath/src/
histopathology/scripts/aggregate_metrics_crossvalidation.py with the Run ID of the hyperdrive run,
and run the script as follows:

conda activate HimlHisto
python hi-ml-cpath/src/histopathology/scripts/aggregate_metrics_crossvalidation.py

19.6. Cross-validation 69

hi-ml

70 Chapter 19. DeepMIL model for tumor grading on PANDA dataset

CHAPTER

TWENTY

DEEPMIL MODEL FOR GENETIC MUTATION ON TCGA-CRCK

20.1 Background

The repository contains the configuration for training a Deep Multiple Instance Learning (DeepMIL) models for mi-
crosatellite instability (MSI) prediction on the TCGA-CRCk dataset. Instructions to download and prepare the dataset
are here. The dataset is composed of tiles.

The models are developed to reproduce the results described in the DeepSMILE papers Schirris et al. 2021 and Schirris
et al. 2022.

A ResNet18 encoder that was pre-trained on ImageNet is downloaded on-the-fly (from here at the start of the training
run when using the ImageNet configuration. The SSL MIL configuration requires the checkpoint of a pre-trained SSL
encoder (ResNet50) on the TCGA-CRCk dataset. The SSL encoder that can be obtained following the instructions on
how to train a custom SSL encoder on a pre-tiled dataset.

20.2 Preparations

Please follow the instructions in the Readme file to create a Conda environment and activate it, and the instructions to
set up Azure to run in the cloud.

20.3 Running the model

You can run the model in the same way you run the benchmark model on PANDA. If you have GPU available locally,
you can run training on that machine, by executing in <root>/hi-ml-histopathology:

conda activate HimlHisto
python ../hi-ml/src/health_ml/runner.py --model health_cpath.TcgaCrckImageNetMIL

If you setup a GPU cluster in Azure, you can run the training in the cloud by simply appending name of the compute
cluster:

conda activate HimlHisto
python ../hi-ml/src/health_ml/runner.py --model health_cpath.TcgaCrckImageNetMIL --
→˓cluster=<your_cluster_name>

Assuming you pre-trained your own SSL encoder and updated the checkpoint path in the SSLencoder class, the SSL
MIL model configuration can be run using the flag --model histopathology.TcgaCrckSSLMIL.

71

https://zenodo.org/record/2530835
https://pubmed.ncbi.nlm.nih.gov/35596966/
https://www.sciencedirect.com/science/article/abs/pii/S1361841522001116
https://www.sciencedirect.com/science/article/abs/pii/S1361841522001116
https://download.pytorch.org/models/
../README.md#setting-up-python
../README.md#setting-up-azureml

hi-ml

20.4 Expected results

ImageNet MIL (ResNet18)

• Test AUROC: 0.706 ± 0.041

• Test F1 score: 0.490 ± 0.041

SSL MIL (ResNet50)

• Test AUROC: 0.825 ± 0.065

• Test F1 score: 0.516 ± 0.171

72 Chapter 20. DeepMIL model for genetic mutation on TCGA-CRCK

CHAPTER

TWENTYONE

PRE-TRAINING OF AN IMAGE ENCODER USING SELF-SUPERVISED
LEARNING

Often in histopathology, we only have access to weak labels, e.g., a single label for an entire Whole Slide Image
(WSI). However, papers like DeepSmiles show that we can use unlabeled tiles from WSI to pre-train an image encoder
using Self-Supervised Learning (SSL). In hi-ml, we have implemented two popular self-supervised learning methods
SimCLR and BYOL. We will use the TCGA-CRCk dataset, as seen in Kather et al. 2019, the dataset comes with binary
WSI labels (microsatellite stable or instable). We will use the TCGA-CRCk dataset as an example to show how to set
up SSL training in hi-ml. If you want to use your own dataset, you will find instructions at the end of this section.

21.1 Example: Train an image encoder using SSL on the TCGA-CRCk
locally

The TCGA-CRCk dataset consists of colorectal tumor tiles extracted from Formalin-Fixed, Paraffin-Embedded (FFPE)
WSIs from the Cancer Genome Atlas (TCGA) with accompanying binarized MicroSatellite Instability (MSI) labels.
In the case of TCGA-CRCk, the dataset is already tiled, i.e., the WSI are not available. In public_datasets.md you will
find instructions on how to download and setup the TCGA-CRCk dataset.

To train an image encoder using SSL locally run this in the hi-ml-cpath folder, with the HimlHisto conda enviroment
activated:

python ../hi-ml/src/health_ml/runner.py --model SSL.CRCK_SimCLR

The model class CRCK_SimCLR is the config used to train a SSL model on TCGA-CRCk. It houses everything, e.g.,
the model, the dataset, checkpointing, etc. Here, we need to define some important parameters:

1. The type of image encoder we want to train, the type of SSL (SimCLR or BYOL) we want to use, and the
batch_size.

• ssl_encoder=EncoderName.resnet50

• ssl_training_type=SSLTrainingType.SimCLR

• ssl_training_batch_size=48

1. The dataset we want to use for training the image encoder and the linear model we only use for evaluation of the
image encoder. In theory, they could be two different datasets.

• ssl_training_dataset_name=SSL_Dataset_TCGA_CRCK

• linear_head_dataset_name=SSL_Dataset_TCGA_CRCK

1. Model checkpointing: We use PyTorch lightning checkpointing. Among others, we define the validation metric,
where the online_evaluator is the same as the linear_head. In the case of TCGA_CRCK, we use AUC
ROC as the validation metric.

73

https://arxiv.org/abs/2107.09405
https://arxiv.org/abs/2002.05709
https://arxiv.org/abs/2006.07733
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7423299/
https://github.com/microsoft/hi-ml/blob/7f4baadaa8bc0d08a4895ca896ebc3f68ea6a4f8/hi-ml-histopathology/src/histopathology/configs/SSL/CRCK_SimCLRContainer.py#L24
https://github.com/microsoft/hi-ml/blob/7f4baadaa8bc0d08a4895ca896ebc3f68ea6a4f8/hi-ml-histopathology/src/histopathology/configs/SSL/CRCK_SimCLRContainer.py#L52
https://github.com/microsoft/hi-ml/blob/7f4baadaa8bc0d08a4895ca896ebc3f68ea6a4f8/hi-ml-histopathology/src/histopathology/configs/SSL/CRCK_SimCLRContainer.py#L53
https://github.com/microsoft/hi-ml/blob/7f4baadaa8bc0d08a4895ca896ebc3f68ea6a4f8/hi-ml-histopathology/src/histopathology/configs/SSL/CRCK_SimCLRContainer.py#L51
https://github.com/microsoft/hi-ml/blob/7f4baadaa8bc0d08a4895ca896ebc3f68ea6a4f8/hi-ml-histopathology/src/histopathology/configs/SSL/CRCK_SimCLRContainer.py#L40
https://github.com/microsoft/hi-ml/blob/7f4baadaa8bc0d08a4895ca896ebc3f68ea6a4f8/hi-ml-histopathology/src/histopathology/configs/SSL/CRCK_SimCLRContainer.py#L41
https://pytorch-lightning.readthedocs.io/en/stable/common/checkpointing.html

hi-ml

• model_monitor_metric='ssl_online_evaluator/val/AreaUnderRocCurve'

In the parent class of CRCK_SimCLR, HistoSSLContainer the data augmentations are defined. Data augmentation is
one of the most important components of SSL training. Currently, we have hardcoded the data augmentation used in
the SimCLR paper. These are the following:

• RandomResizedCrop(size=224)

• RandomHorizontalFlip(p=0.5)

• RandomApply([ColorJitter(brightness=0.8, contrast=0.8, saturation=0.8, hue=0.2)],
0.8)

• RandomGrayscale(p=0.2)

• GaussianBlur(int(224 * 0.1) + 1)

While not optimized for WSI we observe good performance using these augmentations. The data augmentations are
wrapped by DualViewTransformWrapper to return two augmented versions per tile, as required by the majority of
SSL methods.

21.2 Train on Azure

In the case of SimCLR, the effective batch_size (batch_size * GPU) should be as big as possible. The SSL models
in hi-ml natively supports distributed training using multiple GPUs. We recommend using 8 GPUs for running the
SimCLR model on the TCGA-CRCk dataset. Assuming you are using a total of 8 GPUs (e.g. 1 node with 8 GPUs or
2 nodes with 4 GPUs) in Azure you can start training with the following command in the repository root folder:

python hi-ml/src/health_ml/runner.py --model SSL.CRCK_SimCLR --cluster CLUSTER_NAME --
→˓conda_env hi-ml-cpath/environment.yml

A SimCLR run with 200 epochs, 8 GPUs, and a batch size of 48 (per GPU) takes about 6 hours. On Azure we use
Standard_ND40rs_v2 (40 cores, 672 GB RAM, 2900 GB disk, 8 x NVIDIA Tesla V100).

Let’s have a look at the training behavior.

As mentioned previously, using the WSI label for each tile of the same slide and a linear head on the outputs of the
image encoder to monitor training works quite well. We see a smooth and steady increase of the validation metric.

74 Chapter 21. Pre-training of an image encoder using self-supervised learning

https://github.com/microsoft/hi-ml/blob/7f4baadaa8bc0d08a4895ca896ebc3f68ea6a4f8/hi-ml-histopathology/src/histopathology/configs/SSL/CRCK_SimCLRContainer.py#L48
https://arxiv.org/abs/2002.05709
https://github.com/microsoft/hi-ml/blob/341afee5869d0d8d5db99283c06959d73517d8b7/hi-ml-histopathology/src/histopathology/configs/SSL/HistoSimCLRContainer.py#L57
https://github.com/microsoft/hi-ml/blob/341afee5869d0d8d5db99283c06959d73517d8b7/hi-ml-histopathology/src/histopathology/configs/SSL/HistoSimCLRContainer.py#L58
https://github.com/microsoft/hi-ml/blob/341afee5869d0d8d5db99283c06959d73517d8b7/hi-ml-histopathology/src/histopathology/configs/SSL/HistoSimCLRContainer.py#L59
https://github.com/microsoft/hi-ml/blob/341afee5869d0d8d5db99283c06959d73517d8b7/hi-ml-histopathology/src/histopathology/configs/SSL/HistoSimCLRContainer.py#L59
https://github.com/microsoft/hi-ml/blob/341afee5869d0d8d5db99283c06959d73517d8b7/hi-ml-histopathology/src/histopathology/configs/SSL/HistoSimCLRContainer.py#L60
https://github.com/microsoft/hi-ml/blob/341afee5869d0d8d5db99283c06959d73517d8b7/hi-ml-histopathology/src/histopathology/configs/SSL/HistoSimCLRContainer.py#L61
https://github.com/microsoft/hi-ml/blob/ff24cc34c85b1f4f1692419cbbb3a9818127c9c6/hi-ml-histopathology/src/SSL/data/transforms_utils.py#L74

hi-ml

In addition, we are using a cosine learning rate schedule with a fixed warm up of 10 epochs. Note: The SSL code in
hi-ml automatically scales the learning rate to the number of GPUs used during training, as described here.

Last, the training and validation loss curves are expected to look like this.

After training, we can use the pre-trained image encoder on downstream tasks like microsatellite stable/instable pre-
diction on TCGA-CRCk. You only have to specify the path to the checkpoint of the SSL image encoder in the setup
function of DeepSMILECrck.

21.2. Train on Azure 75

https://arxiv.org/abs/1706.02677
https://github.com/microsoft/hi-ml/blob/341afee5869d0d8d5db99283c06959d73517d8b7/hi-ml-histopathology/src/histopathology/configs/classification/DeepSMILECrck.py#L60

hi-ml

21.3 Using your own dataset

For scripts that help you tile your own dataset please see histopathology/preprocessing/tiling.py. In the
case of TCGA-CRCk, the dataset is already tiled. TcgaCrck_TilesDataset is a child of TilesDataset. For a
TilesDataset we assume that each tile has a unique tile index and a label. Since we assume that we are working with
weakly labelled WSI we do not have access to the real tile labels. However, we found that monitoring the SSL training
using the slide label for each tile works sufficiently well. I.e., if the WSI has a positive label then every tile from the
WSI has a positive label. Last, the unique index for each tile is used to make sure we don’t use twice the same tile in
one training epoch during SSL training.

Subsequently, the TCGA-CRCk dataset is wrapped in TcgaCrck_TilesDatasetReturnImageLabel. Here the data
augmentations are applied and the __getitem__ method is defined.

The dataset is then wrapped one last time in TcgaCrck_TilesDatasetWithReturnIndex, where we inherit the
ability to return the tile index from DatasetWithReturnIndex.

76 Chapter 21. Pre-training of an image encoder using self-supervised learning

https://github.com/microsoft/hi-ml/blob/main/hi-ml-histopathology/src/histopathology/preprocessing/tiling.py
https://github.com/microsoft/hi-ml/blob/main/hi-ml-histopathology/src/histopathology/datasets/tcga_crck_tiles_dataset.py
https://github.com/microsoft/hi-ml/blob/main/hi-ml-histopathology/src/histopathology/datasets/base_dataset.py
https://github.com/microsoft/hi-ml/blob/main/hi-ml-histopathology/src/histopathology/datasets/base_dataset.py
https://github.com/microsoft/hi-ml/blob/main/hi-ml-histopathology/src/histopathology/datasets/tcga_crck_tiles_dataset.py
https://github.com/microsoft/hi-ml/blob/main/hi-ml-histopathology/src/histopathology/datasets/tcga_crck_tiles_dataset.py
https://github.com/microsoft/hi-ml/blob/main/hi-ml-histopathology/src/SSL/data/dataset_cls_utils.py

CHAPTER

TWENTYTWO

DIGITAL SLIDE ARCHIVE

The Digital Slide Archive (DSA) is “a containerized web-based platform for the analysis, visualization, management
and annotation of whole-slide digital pathology imaging data”. It is an open-source project based on Kitware’s data
management platform Girder.

22.1 Azure deployment

We have deployed the DSA on Azure to visualize our data and interpret our models and experiments. Below are
instructions to replicate our deployment using your own data.

22.1.1 Host

The first step is creating a Linux virtual machine (VM) to host the DSA. The code can be downloaded from GitHub and
run using Docker. By default, the application runs at port 8080. To use HTTPS, an SSL certificate must be obtained
and port 443 may be specified instead within the Docker configuration. The DSA uses Cherrypy as the underlying
server engine. Therefore, Cherrypy must be configured to use the SSL certificate installed in the VM. Ports in a VM
can be opened using network security group rules.

22.1.2 Storage

The datasets we use are securely stored in Azure Blob Storage containers. Containers can be mounted on the host
machine using BlobFuse. Then, Girder assetstores can be created and fed data from the mounted containers.

22.1.3 Authentication

We have added Microsoft as a provider in the OAuth2 Login plugin for Girder. The authentication settings widget
describes the steps needed to generate the provider credentials.

First, our deployed DSA must be registered in Azure Active Directory (Azure AD) as an application.

77

https://digitalslidearchive.github.io/digital_slide_archive/
https://www.kitware.com/
https://girder.readthedocs.io/
https://azure.microsoft.com/
https://docs.microsoft.com/azure/virtual-machines/linux/quick-create-portal
https://github.com/DigitalSlideArchive/digital_slide_archive/blob/master/devops/README.rst
https://www.docker.com/
https://docs.cherrypy.dev/en/latest/
https://docs.cherrypy.dev/en/latest/deploy.html#ssl-support
https://docs.microsoft.com/en-us/azure/virtual-machines/windows/nsg-quickstart-portal
https://azure.microsoft.com/services/storage/blobs/
https://github.com/Azure/azure-storage-fuse
https://girder.readthedocs.io/en/latest/user-guide.html#assetstores
https://github.com/girder/girder/pull/3393
https://girder.readthedocs.io/en/latest/plugins.html#oauth2-login
https://docs.microsoft.com/en-us/azure/active-directory/develop/quickstart-register-app
https://azure.microsoft.com/en-us/services/active-directory/

hi-ml

Once the DSA app has been registered, a client ID (also called application ID) will be generated. Then, a client secret
(also called application password) must also be generated. Finally, the tenant ID (the Azure ID of your organization)
may be specified so that access is restricted to users belonging to your tenant. These three strings will be used to
configure authentication in the OAuth2 Login plugin settings.

22.1.4 Authorization

User permissions can be set to different data collections in an assetstore, to maximize protection of sensitive data.

22.1.5 Creating API Keys

You can create an API key for a user in DSA directly on the web.

• Navigate to your DSA and log in

• Click on “Users” in the navigation bar

• Click on the user you want to create an API key for

• On the top right, there is a menu “Actions”, choose “Edit user”

• You will see 4 tabs with user information, click on “API Keys”

• Choose a name for the key, a duration in days. It is important to choose “Allow all actions on behalf of this user”!

• Click “Create”. You will see the list of keys, press “show” to reveal the actual key value. Copy it.

• Set the key as an environment variable DSA_API_KEY (in bash, this would be export DSA_API_KEY=<the
key>)

• In addition, you can also set the URL for your DSA instance as an environment variable DSA_URL (in bash, this
would be export DSA_URL=<the url>)

78 Chapter 22. Digital Slide Archive

https://docs.microsoft.com/en-us/azure/active-directory/develop/quickstart-register-app
https://girder.readthedocs.io/en/stable/user-guide.html#permissions

hi-ml

22.2 Visualizing Azure Machine Learning results

The Girder RESTful API may be used to upload annotations to DSA items programmatically. An example of a use
case is creating annotations to visualize attention maps generated by a deep learning model. The girder module
in this repository includes tools to download training results from Azure Machine Learning (Azure ML) and upload
annotations to a deployed DSA. For example:

SCRIPT="hi-ml-cpath/src/histopathology/utils/girder.py"
python $SCRIPT \

--run-id "Experiment_transformer_Gleason_run_0" \
--dsa-url "https://my-deployed-dsa.azure.com/" \
--dsa-key "AHKZ42Ks24kSH5Fxt3354ryKzCxamjqM" \
--workspace-config "config.json" \

The DSA URL and API key may be specified in environment variables DSA_URL and DSA_API_KEY instead, see above.
The workspace configuration file contains information related to the Azure Machine Learning workspace:

{
"subscription_id": "22f7beb4-1b54-9ee7-5255-6dbcc8da000b",
"resource_group": "myresourcegroup",
"workspace_name": "myworkspace"

}

It can be downloaded from the workspace website:

22.2. Visualizing Azure Machine Learning results 79

https://girder.readthedocs.io/en/latest/api-docs.html
https://docs.microsoft.com/en-us/azure/machine-learning/concept-workspace

hi-ml

The script uses the Azure SDK and the Python client for the Girder API to:

1. Log into Azure ML

2. Download training results

3. Generate JSON annotations for each slide

4. Search for the slide by slide ID in DSA by using full text search

5. Upload the annotations to the deployed DSA

For a full description of all the options, add --help to the arguments.

Below is an example of an attention map overlaid on a slide from the PANDA dataset:

80 Chapter 22. Digital Slide Archive

https://docs.microsoft.com/en-us/azure/machine-learning/how-to-configure-environment#workspace
https://docs.microsoft.com/en-us/azure/developer/python/sdk/azure-sdk-overview
https://girder.readthedocs.io/en/latest/python-client.html#python-client
https://docs.microsoft.com/en-us/azure/machine-learning/concept-workspace

hi-ml

22.2.1 Upload into a folder

The girder.py script can also upload the annotations into a folder in DSA. This is helpful if there are multiple variants
of the same slide in DSA, but located in different folders. Simple text search would then return multiple results.

To use the folder functionality, you need to supply the name of the folder via --folder. For example, to upload the
annotations to folder foo in collection Collection, add ``–folder Collection1/foo`.

When supplying a folder argument, searching for the slide where annotations will be added works differently:

1. Firstly, all slides in the folder are retrieved.

2. Then, the script tries to identify which of the slides in the folder contains the value from the slide_id field.

3. If there is exactly one matching slide, the annotations are added to that slide. Annotations that match zero or
more than one slide are ignored.

22.2. Visualizing Azure Machine Learning results 81

hi-ml

82 Chapter 22. Digital Slide Archive

CHAPTER

TWENTYTHREE

CREATING MONTAGES FROM WHOLE SLIDE IMAGES (WSIS)

For working with large amounts of histology data, it is often useful to create montages of the data. Montages are
a collection of images that are stitched together to form a single image. Montages are useful for visualizing large
amounts of data at once, and can be used to create a single image that can be used for analysis. The hi-ml-cpath
toolbox contains scripts that help with the creation of montages from whole slide images (WSIs).

Creating montages can be very time-consuming. It can hence be helpful to run the process in the cloud. The montage
creation code provided here can be run in AzureML very easily.

23.1 Types of data for montage creation

1. Montages can be created from a folder of images, by specifying the name of the folder and a glob pattern, like
**/foo_*.tiff.

2. Montages can be created by first reading a file called dataset.csv located in a folder. dataset.csv is ef-
fectively a Pandas DataFrame, with each row corresponding to a single image. More details on the format of
dataset.csv can be found below.

Montage creation works for all WSI image formats that are supported by either of the two possible backends:

• openslide supports .tif(f), .ndpi, .scn and others

• cucim supports .svs, .tiff and others

23.2 Setup

• Check out the hi-ml repository via git clone https://github.com/microsoft/hi-ml

• Run the following commands:

cd hi-ml-cpath
make env
conda activate HimlHisto
make pip_local

All the commands listed below assume that

• you have activated the Conda environment HimlHisto

• your current working directory is <repo root>/hi-ml-cpath

83

https://openslide.org/api/python/
https://pypi.org/project/cucim/

hi-ml

23.3 Creating montages from a folder with files

The following command will create a montage from all files in the folder /data that match the pattern **/*.tiff.

python src/health_cpath/scripts/create_montage.py --dataset /data --image_glob_pattern
→˓'**/*.tiff' --level 2 --width 1000 --output_path montage1

This will create a montage from all TIFF files in folder /data. Each TIFF file is read as a multi-level image, and level
2 is read for creating the montage.

The --width argument determines the width in pixel of the output image. The height of the output image is determined
automatically. Note that the width given here, 1000, is suitable only for montages from a very small number of files
(say, 10). See below for more details on this commandline option.

This will create two images in the folder specified by the --output_path montage1 argument, hence outputting the
files montage1/montage.jpg and montage1/montage.png.

Here’s an example how this could look like for a folder with 6 images, 0.tiff through 5.tiff:

23.4 Creating montages from a dataset.csv file

If the montage creation script is only pointed to a folder, without providing a glob pattern, it assumes that a file
dataset.csv is present. A montage will be created from only the images listed in dataset.csv. In addition, an
optional label column will be added to the text that is overlayed onto the images itself.

The dataset file should be a CSV file, with each row corresponding to a single image. When working with a dataset.
csv file, the following columns are handled:

Column
name

Contents Re-
quired?

image The path of the image that should be loaded Required
slide_id A unique identifier for the slide Required
label An additional string that will be placed on the montage, This could be 0, 1, tumour,

. . .
Optional

mask The path of an additional image that will rendered next to the image given in image Optional

Consider this example dataset file:

84 Chapter 23. Creating montages from whole slide images (WSIs)

hi-ml

image,slide_id,label
2.tiff,ID 2,Label 2
3.tiff,ID 3,Label 3
4.tiff,ID 4,Label 4
5.tiff,ID 5,Label 5

Run montage creation with the following command:

python src/health_cpath/scripts/create_montage.py --dataset /data --level 2 --width 1000␣
→˓--output_path montage1

This would produce (assuming that the images 2.tiff, 3.tiff, 4.tiff, and 5.tiff are present in the folder /data)
a montage similar to this one:

23.4.1 Using inclusion or exclusion lists

When creating montages from a dataset.csv file, it is possible to create montages from only a specific subset of
rows, or all rows apart from those in a given list.

• Use the --exclude_by_slide_id exclude.txt argument to point to a file with a list of slide IDs that should
be excluded from the montage.

• Use the --include_by_slide_id include.txt argument to point to a file with a list of slide IDs for which
the montage should be created.

The files exclude.txt and include.txt should contain one slide ID per line.

23.4. Creating montages from a dataset.csv file 85

hi-ml

23.5 Other commandline options

• Use --width=20000 to set the width of the output montage image. The height of the output image is determined
automatically. Mind that the default value is 60_000, suitable for several hundreds of input images. If you want
to try out montage creation on a small set of files (say, 10), ensure that you set the width to a reasonably small
value, like --width=1000

• Use --parallel=2 to specify the number of parallel processes that should be used for creating image thumb-
nails. Thumbnails are created in a first step, using multiple processes, and then the thumbnails are stitched into
the final montage in the main process.

• Use --backend=cucim to switch the image reader backend to CuCIM. The default backend is openslide.

23.6 Running in Azure

The create_montage.py script can be run in AzureML by adding 3 commandline arguments.

To set up Azure and AzureML:

• Follow the steps in the AzureML onboarding.

• At the end of the onboarding you will download a file config.json from your AzureML workspace to your
repository root folder.

• To understand datasets, please read through the AzureML datasets documentation. Then create an AzureML
datastore that points to your Azure Blob Storage account.

• Upload your WSIs to a folder in Azure Blob Storage. This can be done most efficiently via azcopy. azcopy can
also copy directly across cloud providers, for example from AWS to Azure.

The following command will upload all files in the folder my_test_slides to a container datasets in your Azure
Blob Storage account called mystorage, creating a folder my_test_slides in the storage account in the process:

azcopy copy my_test_slides https://mystorage.blob.core.windows.net/datasets/ --recursive

The following command will then create a run in AzureML that executes montage creation from that folder:

python src/health_cpath/scripts/create_montage.py --dataset my_test_slides --level 2 --
→˓width 1000 --cluster <clustername> --conda_env environment.yml --datastore
→˓<datastorename>

In this command, replace the following:

• Replace my_test_slides with the name of the folder in blob storage where you uploaded your WSIs.

• clustername is the name of a compute cluster where your job will execute)

• datastorename is the name of an AzureML datastore, essential a pointer to your blob storage account plus the
credentials that are necessary to access it. For the above example, the data store needs to point to storage account
mystorage and container datasets.

The command above will only run for a minute or less - it will mostly create a snapshot of the code and send that off
to the cloud for execution. At the end you will see a link printed out that takes you to the AzureML portal, where you
can monitor the progress of the run.

Once the run is completed, you will find two files montage.jpg and montage.png in the tab “Outputs” of the run,
and an option to download it to your machine.

86 Chapter 23. Creating montages from whole slide images (WSIs)

http://aka.ms/azcopy
https://learn.microsoft.com/en-us/azure/machine-learning/quickstart-create-resources#create-compute-clusters

CHAPTER

TWENTYFOUR

HISTOPATHOLOGY SCRIPTS

Please see links below for details on the available arguments for each of the histopathology scripts.

24.1 create_montage

This script can create a high-resolution montage of all images in a folder or datasets.

Create an overview image with thumbnails of all slides in a dataset.

usage: python create_montage.py --dataset <dataset_folder> --image_glob_pattern '**/*.
→˓tiff' --width 1000

24.1.1 Named Arguments

--cluster The name of the GPU or CPU cluster inside the AzureML workspacethat should
execute the job. To run on your local machine, omit this argument.

Default: “”

--datastore The name of the AzureML datastore where the dataset is defined.

Default: “”

--dataset The name of the AzureML dataset to use for creating the montage. The dataset will
be mounted automatically. Use an absolute path to a folder on the local machine
to bypass mounting.

Default: “”

--conda_env The Conda environment file that should be used when submitting the present run
to AzureML. If not specified, the hi-ml-cpath environment file will be used.

Default: hi-ml/hi-ml-cpath/environment.yml

--wait_for_completion If True, wait for AML Run to complete before proceeding. If False, submit the
run to AML and exit

Default: False

--docker_shm_size The shared memory in the Docker image for the AzureML VMs.

Default: “100g”

87

hi-ml

--workspace_config_path The path to the AzureML workspace configuration file. If not specified, the
configuration file in the current folder or one of its parents will be used.

--display_name The display name of the AzureML run. If not specified, a default name will be
used.

Default: “”

--level Resolution downsample level, e.g. if lowest resolution is 40x and the available
downsample levels are [1.0, 4.0, 16.0] then level = 1 corresponds to 10x magnifi-
cation

Default: 1

--exclude_by_slide_id Provide a file that contains slide IDs that should be excluded. File format is
CSV, the first column is used as the slide ID. If the file is empty, no slides will be
excluded.

--include_by_slide_id Provide a file that contains slide IDs that should be included. File format is CSV,
the first column is used as the slide ID. If the file is empty, no montage will be
produced.

--image_glob_pattern When provided, use this pattern in rglob to find the files that should be included
in the montage. Example: ‘**/*.tiff’ to find all TIFF files recursive. You may
have to escape the pattern in your shell.

Default: “”

--width The width of the montage in pixels

Default: 60000

--output_path The folder where the montage will be saved

Default: outputs

--parallel The number of parallel processes to use when creating the montage.

Default: 8

--backend The backend to use for reading the slides. Can be ‘openslide’ or ‘cucim’

Default: “openslide”

88 Chapter 24. Histopathology Scripts

CHAPTER

TWENTYFIVE

HI-ML MULTIMODAL TOOLBOX

This toolbox provides models for multimodal health data. The code is available on GitHub and Hugging Face .

25.1 Getting started

The best way to get started is by running the phrase grounding notebook and the examples. All the dependencies will
be installed upon execution, so Python 3.9 and Jupyter are the only requirements to get started.

The notebook can also be run on Binder, without the need to download any code or install any libraries:

25.2 Installation

The latest version can be installed using pip:

pip install --upgrade hi-ml-multimodal

25.2.1 Development

For development, it is recommended to clone the repository and set up the environment using conda:

git clone https://github.com/microsoft/hi-ml.git
cd hi-ml-multimodal
make env

This will create a conda environment named multimodal and install all the dependencies to run and test the package.

You can visit the API documentation for a deeper understanding of our tools.

89

https://github.com/microsoft/hi-ml/tree/main/hi-ml-multimodal
https://aka.ms/biovil-models
https://github.com/microsoft/hi-ml/tree/main/hi-ml-multimodal/notebooks/phrase_grounding.ipynb
https://jupyter.org/
https://mybinder.org/v2/gh/microsoft/hi-ml/HEAD?labpath=hi-ml-multimodal%2Fnotebooks%2Fphrase_grounding.ipynb
https://mybinder.org/v2/gh/microsoft/hi-ml/HEAD?labpath=hi-ml-multimodal%2Fnotebooks%2Fphrase_grounding.ipynb
https://docs.conda.io/en/latest/miniconda.html
https://hi-ml.readthedocs.io/en/latest/api/multimodal.html

hi-ml

25.3 Examples

For zero-shot classification of images using text prompts, please refer to the example script that utilises a small subset
of Open-Indiana CXR dataset for pneumonia detection in chest X-ray images. Please note that the examples and models
are not intended for deployed use cases (commercial or otherwise), which is currently out-of-scope.

25.4 Hugging Face

While the GitHub repository provides examples and pipelines to use our models, the weights and model cards are
hosted on Hugging Face .

25.5 Credit

If you use our code or models in your research, please cite our recent ECCV and CVPR papers:

Boecking, B., Usuyama, N. et al. (2022). Making the Most of Text Semantics to Improve Biomedical
Vision–Language Processing. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds)
Computer Vision – ECCV 2022. ECCV 2022. Lecture Notes in Computer Science, vol 13696. Springer,
Cham. https://doi.org/10.1007/978-3-031-20059-5_1

Bannur, S., Hyland, S., et al. (2023). Learning to Exploit Temporal Structure for Biomedical Vision-
Language Processing. In: CVPR 2023.

25.5.1 BibTeX

@InProceedings{10.1007/978-3-031-20059-5_1,
author="Boecking, Benedikt and Usuyama, Naoto and Bannur, Shruthi and Castro, Daniel␣

→˓C. and Schwaighofer, Anton and Hyland, Stephanie and Wetscherek, Maria and Naumann,␣
→˓Tristan and Nori, Aditya and Alvarez-Valle, Javier and Poon, Hoifung and Oktay, Ozan",

editor="Avidan, Shai and Brostow, Gabriel and Ciss{\'e}, Moustapha and Farinella,␣
→˓Giovanni Maria and Hassner, Tal",

title="Making the Most of Text Semantics to Improve Biomedical Vision--Language␣
→˓Processing",

booktitle="Computer Vision -- ECCV 2022",
year="2022",
publisher="Springer Nature Switzerland",
address="Cham",
pages="1--21",
isbn="978-3-031-20059-5"

}

@inproceedings{bannur2023learning,
title={Learning to Exploit Temporal Structure for Biomedical Vision{\textendash}

→˓Language Processing},
author={Shruthi Bannur and Stephanie Hyland and Qianchu Liu and Fernando P\'{e}rez-

→˓Garc\'{i}a and Maximilian Ilse and Daniel C. Castro and Benedikt Boecking and Harshita␣
→˓Sharma and Kenza Bouzid and Anja Thieme and Anton Schwaighofer and Maria Wetscherek␣
→˓and Matthew P. Lungren and Aditya Nori and Javier Alvarez-Valle and Ozan Oktay},

booktitle={Conference on Computer Vision and Pattern Recognition 2023},
(continues on next page)

90 Chapter 25. HI-ML Multimodal Toolbox

https://openi.nlm.nih.gov/faq
https://github.com/microsoft/hi-ml/tree/main/hi-ml-multimodal
https://aka.ms/biovil-models
https://doi.org/10.1007/978-3-031-20059-5_1
https://doi.org/10.1007/978-3-031-20059-5_1
https://doi.org/10.1007/978-3-031-20059-5_1
https://arxiv.org/abs/2301.04558
https://arxiv.org/abs/2301.04558

hi-ml

(continued from previous page)

year={2023},
url={https://openreview.net/forum?id=5jScn5xsbo}

}

25.5. Credit 91

hi-ml

92 Chapter 25. HI-ML Multimodal Toolbox

CHAPTER

TWENTYSIX

API

26.1 Vision-language processing (VLP)

vlp Visual-language processing tools

26.1.1 health_multimodal.vlp

Visual-language processing tools

inference_engine Tools related to joint image and text inference

health_multimodal.vlp.inference_engine

Tools related to joint image and text inference

Classes

ImageTextInferenceEngine(. . .) Functions related to inference on ImageTextModel.

class health_multimodal.vlp.inference_engine.ImageTextInferenceEngine(image_inference_engine,
text_inference_engine)

Functions related to inference on ImageTextModel.

static convert_similarity_to_image_size(similarity_map, width, height, resize_size, crop_size,
val_img_transform=None, interpolation='nearest')

Convert similarity map from raw patch grid to original image size, taking into account whether the image
has been resized and/or cropped prior to entering the network.

Return type ndarray

get_similarity_map_from_raw_data(image_path, query_text, interpolation='nearest')
Return a heatmap of the similarities between each patch embedding from the image and the text embedding.

Parameters
• image_path (Path) – Path to the input chest X-ray, either a DICOM or JPEG file.

• query_text (str) – Input radiology text phrase.

93

hi-ml

• interpolation (str) – Interpolation method to upsample the heatmap so it matches the
input image size. See torch.nn.functional.interpolate() for more details.

Return type ndarray

Returns A heatmap of the similarities between each patch embedding from the image and the
text embedding, with the same shape as the input image.

get_similarity_score_from_raw_data(image_path, query_text)
Compute the cosine similarity score between an image and one or more strings.

If multiple strings are passed, their embeddings are averaged before L2-normalization.

Parameters
• image_path (Path) – Path to the input chest X-ray, either a DICOM or JPEG file.

• query_text (Union[List[str], str]) – Input radiology text phrase.

Return type float

Returns The similarity score between the image and the text.

to(device)
Move models to the specified device.

Return type None

class health_multimodal.vlp.ImageTextInferenceEngine(image_inference_engine,
text_inference_engine)

Functions related to inference on ImageTextModel.

static convert_similarity_to_image_size(similarity_map, width, height, resize_size, crop_size,
val_img_transform=None, interpolation='nearest')

Convert similarity map from raw patch grid to original image size, taking into account whether the image
has been resized and/or cropped prior to entering the network.

Return type ndarray

get_similarity_map_from_raw_data(image_path, query_text, interpolation='nearest')
Return a heatmap of the similarities between each patch embedding from the image and the text embedding.

Parameters
• image_path (Path) – Path to the input chest X-ray, either a DICOM or JPEG file.

• query_text (str) – Input radiology text phrase.

• interpolation (str) – Interpolation method to upsample the heatmap so it matches the
input image size. See torch.nn.functional.interpolate() for more details.

Return type ndarray

Returns A heatmap of the similarities between each patch embedding from the image and the
text embedding, with the same shape as the input image.

get_similarity_score_from_raw_data(image_path, query_text)
Compute the cosine similarity score between an image and one or more strings.

If multiple strings are passed, their embeddings are averaged before L2-normalization.

Parameters
• image_path (Path) – Path to the input chest X-ray, either a DICOM or JPEG file.

• query_text (Union[List[str], str]) – Input radiology text phrase.

94 Chapter 26. API

hi-ml

Return type float

Returns The similarity score between the image and the text.

to(device)
Move models to the specified device.

Return type None

26.2 Image processing

image Image-related tools

26.2.1 health_multimodal.image

Image-related tools

inference_engine

utils

health_multimodal.image.inference_engine

Classes

ImageInferenceEngine(image_model, transform) Encapsulate inference-time operations on an image
model.

class health_multimodal.image.inference_engine.ImageInferenceEngine(image_model, transform)
Encapsulate inference-time operations on an image model.

Parameters
• img_model – Trained image model

• transform (Compose) – Transform to apply to the image after loading. Must return a
torch.Tensor that can be input directly to the image model.

get_projected_global_embedding(image_path)
Compute global image embedding in the joint latent space.

Parameters image_path (Path) – Path to the image to compute embeddings for.

Return type Tensor

Returns Torch tensor containing l2-normalised global image embedding [joint_feature_dim,]
where joint_feature_dim is the dimensionality of the joint latent space.

get_projected_patch_embeddings(image_path)
Compute image patch embeddings in the joint latent space, preserving the image grid.

Parameters image_path (Path) – Path to the image to compute embeddings for.

26.2. Image processing 95

hi-ml

Return type Tuple[Tensor, Tuple[int, int]]

Returns A tuple containing the image patch embeddings and the shape of the original image
(width, height) before applying transforms.

load_and_transform_input_image(image_path, transform)
Read an image and apply the transform to it.

1. Read the image from the given path

2. Apply transform

3. Add the batch dimension

4. Move to the correct device

Parameters return_original_shape – Whether to return an extra tuple that has the original
shape of the image before the transforms. The tuple returned contains (width, height).

Return type Tuple[Tensor, Tuple[int, int]]

health_multimodal.image.utils

Functions

get_image_inference([image_model_type]) Create a ImageInferenceEngine for the image model.

Classes

ImageModelType(value) An enumeration.

class health_multimodal.image.utils.ImageModelType(value)
An enumeration.

health_multimodal.image.utils.get_image_inference(image_model_type=ImageModelType.BIOVIL_T)
Create a ImageInferenceEngine for the image model.

Parameters image_model_type (ImageModelType) – The type of image model to use, BIOVIL or
BIOVIL_T.

The model is downloaded from the Hugging Face Hub. The engine can be used to get embeddings from text
prompts or masked token predictions.

Return type ImageInferenceEngine

io

transforms

96 Chapter 26. API

hi-ml

health_multimodal.image.data.io

Functions

load_image(path) Load an image from disk.
remap_to_uint8(array[, percentiles]) Remap values in input so the output range is [0, 255].

health_multimodal.image.data.io.load_image(path)
Load an image from disk.

The image values are remapped to [0, 255] and cast to 8-bit unsigned integers.

Parameters path (Path) – Path to image.

Return type Image

Returns Image as Pillow Image.

health_multimodal.image.data.io.remap_to_uint8(array, percentiles=None)
Remap values in input so the output range is [0, 255].

Percentiles can be used to specify the range of values to remap. This is useful to discard outliers in the input
data.

Parameters
• array (ndarray) – Input array.

• percentiles (Optional[Tuple[float, float]]) – Percentiles of the input values that will
be mapped to 0 and 255. Passing None is equivalent to using percentiles (0, 100) (but
faster).

Return type ndarray

Returns Array with 0 and 255 as minimum and maximum values.

health_multimodal.image.data.transforms

Functions

create_chest_xray_transform_for_inference(. . .)Defines the image transformation pipeline for Chest-
Xray datasets.

infer_resize_params(val_img_transforms) Given the validation transforms pipeline, extract the
sizes to which the image was resized and cropped, if any.

Classes

ExpandChannels() Transforms an image with one channel to an image with
three channels by copying pixel intensities of the image
along the 1st dimension.

class health_multimodal.image.data.transforms.ExpandChannels
Transforms an image with one channel to an image with three channels by copying pixel intensities of the image
along the 1st dimension.

26.2. Image processing 97

hi-ml

health_multimodal.image.data.transforms.create_chest_xray_transform_for_inference(resize,
cen-
ter_crop_size)

Defines the image transformation pipeline for Chest-Xray datasets.

Parameters
• resize (int) – The size to resize the image to. Linear resampling is used. Resizing is

applied on the axis with smaller shape.

• center_crop_size (int) – The size to center crop the image to. Square crop is applied.

Return type Compose

health_multimodal.image.data.transforms.infer_resize_params(val_img_transforms)
Given the validation transforms pipeline, extract the sizes to which the image was resized and cropped, if any.

Return type Tuple[Optional[int], Optional[int]]

encoder

model

modules

resnet

transformer

types

health_multimodal.image.model.encoder

Functions

get_encoder_from_type(img_encoder_type) Returns the encoder class for the given encoder type.
get_encoder_output_dim(module, device) Calculate the output dimension of an encoder by making

a single forward pass.
restore_training_mode(module) Restore the training mode of a module after some oper-

ation.

Classes

ImageEncoder(img_encoder_type) Image encoder trunk module for the ImageModel class.
MultiImageEncoder(img_encoder_type) Multi-image encoder trunk module for the ImageModel

class.

class health_multimodal.image.model.encoder.ImageEncoder(img_encoder_type)
Image encoder trunk module for the ImageModel class.

:param img_encoder_type [Type of image encoder model to use, either "resnet18_multi_image" or]
"resnet50_multi_image".

98 Chapter 26. API

hi-ml

Initializes internal Module state, shared by both nn.Module and ScriptModule.

forward(current_image, return_patch_embeddings=False)
Get image global and patch embeddings

Return type Union[Tensor, Tuple[Tensor, Tensor]]

reload_encoder_with_dilation(replace_stride_with_dilation=None)
Workaround for enabling dilated convolutions after model initialization.

Parameters replace_stride_with_dilation (Optional[Sequence[bool]]) – Replace the
2x2 standard convolution stride with a dilated convolution in each layer in the last three blocks
of ResNet architecture.

Return type None

class health_multimodal.image.model.encoder.MultiImageEncoder(img_encoder_type)
Multi-image encoder trunk module for the ImageModel class. It can be used to encode multiple images into
combined latent representation. Currently it only supports two input images but can be extended to support more
in future.

Parameters img_encoder_type (str) – Type of image encoder model to use: either "resnet18"
or "resnet50".

Initializes internal Module state, shared by both nn.Module and ScriptModule.

forward(current_image, previous_image=None, return_patch_embeddings=False)
Get image global and patch embeddings

Return type Union[Tensor, Tuple[Tensor, Tensor]]

reload_encoder_with_dilation(replace_stride_with_dilation=None)
Workaround for enabling dilated convolutions after model initialization.

Parameters replace_stride_with_dilation (Optional[Sequence[bool]]) – Replace the
2x2 standard convolution stride with a dilated convolution in each layer in the last three blocks
of ResNet architecture.

Return type None

health_multimodal.image.model.encoder.get_encoder_from_type(img_encoder_type)
Returns the encoder class for the given encoder type.

Parameters img_encoder_type (str) – Encoder type. {RESNET18, RESNET50,
RESNET18_MULTI_IMAGE, RESNET50_MULTI_IMAGE}

Return type ImageEncoder
health_multimodal.image.model.encoder.get_encoder_output_dim(module, device)

Calculate the output dimension of an encoder by making a single forward pass.

Parameters
• module (Module) – Encoder module.

• device (device) – Compute device to use.

Return type int

health_multimodal.image.model.encoder.restore_training_mode(module)
Restore the training mode of a module after some operation.

Parameters module (Module) – PyTorch module.

Return type Generator[None, None, None]

26.2. Image processing 99

hi-ml

health_multimodal.image.model.model

Classes

BaseImageModel() Abstract class for image models.
ImageModel(img_encoder_type, joint_feature_size) Image encoder module
MultiImageModel(**kwargs) Initializes internal Module state, shared by both

nn.Module and ScriptModule.

class health_multimodal.image.model.model.BaseImageModel
Abstract class for image models.

Initializes internal Module state, shared by both nn.Module and ScriptModule.

abstract forward(*args, **kwargs)
Defines the computation performed at every call.

Should be overridden by all subclasses.

Note: Although the recipe for forward pass needs to be defined within this function, one should call the
Module instance afterwards instead of this since the former takes care of running the registered hooks while
the latter silently ignores them.

Return type ImageModelOutput

class health_multimodal.image.model.model.ImageModel(img_encoder_type, joint_feature_size,
freeze_encoder=False,
pretrained_model_path=None,
**downstream_classifier_kwargs)

Image encoder module

Initializes internal Module state, shared by both nn.Module and ScriptModule.

create_downstream_classifier(**kwargs)
Create the classification module for the downstream task.

Return type MultiTaskModel
forward(x)

Defines the computation performed at every call.

Should be overridden by all subclasses.

Note: Although the recipe for forward pass needs to be defined within this function, one should call the
Module instance afterwards instead of this since the former takes care of running the registered hooks while
the latter silently ignores them.

Return type ImageModelOutput

get_patchwise_projected_embeddings(input_img, normalize)
Get patch-wise projected embeddings from the CNN model.

Parameters
• input_img (Tensor) – input tensor image [B, C, H, W].

100 Chapter 26. API

hi-ml

• normalize (bool) – If True, the embeddings are L2-normalized.

Returns projected_embeddings tensor of embeddings in shape [batch, n_patches_h,
n_patches_w, feature_size].

Return type Tensor

train(mode=True)
Switch the model between training and evaluation modes.

Return type Any

class health_multimodal.image.model.model.MultiImageModel(**kwargs)
Initializes internal Module state, shared by both nn.Module and ScriptModule.

forward(current_image, previous_image=None)
Defines the computation performed at every call.

Should be overridden by all subclasses.

Note: Although the recipe for forward pass needs to be defined within this function, one should call the
Module instance afterwards instead of this since the former takes care of running the registered hooks while
the latter silently ignores them.

Return type ImageModelOutput

health_multimodal.image.model.modules

Classes

MLP(input_dim, output_dim[, hidden_dim, . . .]) Fully connected layers to map between image embed-
dings and projection space where pairs of images are
compared.

MultiTaskModel(input_dim, . . .) Torch module for multi-task classification heads.

class health_multimodal.image.model.modules.MLP(input_dim, output_dim, hidden_dim=None,
use_1x1_convs=False)

Fully connected layers to map between image embeddings and projection space where pairs of images are com-
pared.

Parameters
• input_dim (int) – Input embedding feature size

• hidden_dim (Optional[int]) – Hidden layer size in MLP

• output_dim (int) – Output projection size

• use_1x1_convs (bool) – Use 1x1 conv kernels instead of 2D linear transformations for
speed and memory efficiency.

Initializes internal Module state, shared by both nn.Module and ScriptModule.

forward(x)
forward pass of the multi-layer perceptron

Return type Tensor

26.2. Image processing 101

hi-ml

class health_multimodal.image.model.modules.MultiTaskModel(input_dim, classifier_hidden_dim,
num_classes, num_tasks)

Torch module for multi-task classification heads. We create a separate classification head for each task and
perform a forward pass on each head independently in forward(). Classification heads are instances of MLP.

Parameters
• input_dim (int) – Number of dimensions of the input feature map.

• classifier_hidden_dim (Optional[int]) – Number of dimensions of hidden features
in the MLP.

• num_classes (int) – Number of output classes per task.

• num_tasks (int) – Number of classification tasks or heads required.

Initializes internal Module state, shared by both nn.Module and ScriptModule.

forward(x)
Returns [batch_size, num_tasks, num_classes] tensor of logits.

Return type Tensor

health_multimodal.image.model.resnet

Functions

resnet18([pretrained, progress]) ResNet-18 model from “Deep Residual Learning for Im-
age Recognition”.

resnet50([pretrained, progress])
ResNet-50 model from “Deep Residual Learning for Im-
age Recognition”.

Classes

ResNetHIML(**kwargs) Wrapper class of the original torchvision ResNet model.

class health_multimodal.image.model.resnet.ResNetHIML(**kwargs)
Wrapper class of the original torchvision ResNet model.

The forward function is updated to return the penultimate layer activations, which are required to obtain image
patch embeddings.

Initializes internal Module state, shared by both nn.Module and ScriptModule.

forward(x, return_intermediate_layers=False)
ResNetHIML forward pass. Optionally returns intermediate layers using the
return_intermediate_layers argument.

Parameters return_intermediate_layers (bool) – If True, return layers x0-x4 as a tuple,
otherwise return x4 only.

Return type Union[Tensor, Tuple[Tensor, Tensor, Tensor, Tensor, Tensor]]

health_multimodal.image.model.resnet.resnet18(pretrained=False, progress=True, **kwargs)
ResNet-18 model from “Deep Residual Learning for Image Recognition”.

102 Chapter 26. API

https://arxiv.org/pdf/1512.03385.pdf
https://arxiv.org/pdf/1512.03385.pdf
https://arxiv.org/pdf/1512.03385.pdf
https://arxiv.org/pdf/1512.03385.pdf
https://arxiv.org/pdf/1512.03385.pdf

hi-ml

Parameters
• pretrained (bool) – If True, returns a model pre-trained on ImageNet.

• progress (bool) – If True, displays a progress bar of the download to stderr.

Return type ResNetHIML
health_multimodal.image.model.resnet.resnet50(pretrained=False, progress=True, **kwargs)

ResNet-50 model from “Deep Residual Learning for Image Recognition”.

Parameters
• pretrained (bool) – If True, returns a model pre-trained on ImageNet

• progress (bool) – If True, displays a progress bar of the download to stderr.

Return type ResNetHIML

health_multimodal.image.model.transformer

Classes

Block(dim, num_heads[, mlp_ratio, qkv_bias, . . .]) Encapsulates multi-layer perceptron and multi-head self
attention modules into a block.

MultiHeadAttentionLayer(dim[, num_heads, . . .]) Multi-head self attention module
MultiHeadAttentionOutput(mha_output[, atten-
tion])
SinePositionEmbedding([embedding_dim, . . .]) This is a more standard version of the position embed-

ding, very similar to the one used by the Attention is all
you need paper, generalized to work on images.

VisionTransformerPooler(input_dim, grid_shape)
type input_dim int

class health_multimodal.image.model.transformer.Block(dim, num_heads, mlp_ratio=1.0,
qkv_bias=False, drop=0.0, attn_drop=0.0,
drop_path=0.0, act_layer=<class
'torch.nn.modules.activation.GELU'>,
norm_layer=<class
'torch.nn.modules.normalization.LayerNorm'>)

Encapsulates multi-layer perceptron and multi-head self attention modules into a block.

The content builds on top of the TIMM library (vision_transformer.py) and differs by the following:
• This implementation uses spatio-temporal positional embeddings instead of 2D positional embeddings only,

and they are taken into account within the forward pass of each ViT block.

• Utilises the custom defined MultiHeadAttentionLayer which does not apply self-attention only but can be
generalised to arbitrary (query, key, value) tuples. This can be valuable to process more than 2
scans.

Positional and type embeddings are handled in a similar fashion as DETR object localisation paper https://alcinos.
github.io/detr_page/, where a fixed set of sine/cos positional embeddings are used in an additive manner to Q
and K tensors.

Initializes internal Module state, shared by both nn.Module and ScriptModule.

26.2. Image processing 103

https://arxiv.org/pdf/1512.03385.pdf
https://alcinos.github.io/detr_page/
https://alcinos.github.io/detr_page/

hi-ml

forward(x, pos_and_type_embed)
Defines the computation performed at every call.

Should be overridden by all subclasses.

Note: Although the recipe for forward pass needs to be defined within this function, one should call the
Module instance afterwards instead of this since the former takes care of running the registered hooks while
the latter silently ignores them.

Return type Tensor

class health_multimodal.image.model.transformer.MultiHeadAttentionLayer(dim, num_heads=8,
qkv_bias=False,
attn_drop=0.0,
proj_drop=0.0)

Multi-head self attention module

The content builds on top of the TIMM library (vision_transformer.py) and differs by the following:
• Defines a custom MultiHeadAttentionLayer which does not only apply self-attention but it can be

generalised to arbitrary (query, key, value) input tuples. This feature can be valuable to process
more than 2 scans at a time.

• Self-attention specific use-case can still be invoked by calling the forward_as_mhsa method.

Initializes internal Module state, shared by both nn.Module and ScriptModule.

forward(k, q, v)
Defines the computation performed at every call.

Should be overridden by all subclasses.

Note: Although the recipe for forward pass needs to be defined within this function, one should call the
Module instance afterwards instead of this since the former takes care of running the registered hooks while
the latter silently ignores them.

Return type MultiHeadAttentionOutput

class health_multimodal.image.model.transformer.MultiHeadAttentionOutput(mha_output,
attention=None)

class health_multimodal.image.model.transformer.SinePositionEmbedding(embedding_dim=64,
temperature=10000,
normalize=False,
scale=None)

This is a more standard version of the position embedding, very similar to the one used by the Attention is all
you need paper, generalized to work on images.

104 Chapter 26. API

hi-ml

class health_multimodal.image.model.transformer.VisionTransformerPooler(input_dim,
grid_shape,
num_heads=8,
num_blocks=3,
norm_layer=functools.partial(<class
'torch.nn.modules.normalization.LayerNorm'>,
eps=1e-06))

Parameters
• input_dim (int) – Input feature dimension (i.e., channels in old CNN terminology)

• grid_shape (Tuple[int, int]) – Shape of the grid of patches per image

• num_heads (int) – Number of self-attention heads within the MHA block

• num_blocks (int) – Number of blocks per attention layer

• norm_layer (Any) – Normalisation layer

self.type_embed: Is used to characterise prior and current scans, and create permutation variance across
modalities/series.

Initializes internal Module state, shared by both nn.Module and ScriptModule.

forward(current_image, previous_image=None)
Defines the computation performed at every call.

Should be overridden by all subclasses.

Note: Although the recipe for forward pass needs to be defined within this function, one should call the
Module instance afterwards instead of this since the former takes care of running the registered hooks while
the latter silently ignores them.

Return type Tensor

health_multimodal.image.model.types

Classes

ImageEncoderType(value) An enumeration.
ImageEncoderWeightTypes(value) An enumeration.
ImageModelOutput(img_embedding, . . .)

class health_multimodal.image.model.types.ImageEncoderType(value)
An enumeration.

class health_multimodal.image.model.types.ImageEncoderWeightTypes(value)
An enumeration.

class health_multimodal.image.model.types.ImageModelOutput(img_embedding, patch_embeddings,
projected_global_embedding,
class_logits,
projected_patch_embeddings)

26.2. Image processing 105

hi-ml

class health_multimodal.image.BaseImageModel
Abstract class for image models.

Initializes internal Module state, shared by both nn.Module and ScriptModule.

abstract forward(*args, **kwargs)
Defines the computation performed at every call.

Should be overridden by all subclasses.

Note: Although the recipe for forward pass needs to be defined within this function, one should call the
Module instance afterwards instead of this since the former takes care of running the registered hooks while
the latter silently ignores them.

Return type ImageModelOutput

class health_multimodal.image.ImageEncoderType(value)
An enumeration.

class health_multimodal.image.ImageInferenceEngine(image_model, transform)
Encapsulate inference-time operations on an image model.

Parameters
• img_model – Trained image model

• transform (Compose) – Transform to apply to the image after loading. Must return a
torch.Tensor that can be input directly to the image model.

get_projected_global_embedding(image_path)
Compute global image embedding in the joint latent space.

Parameters image_path (Path) – Path to the image to compute embeddings for.

Return type Tensor

Returns Torch tensor containing l2-normalised global image embedding [joint_feature_dim,]
where joint_feature_dim is the dimensionality of the joint latent space.

get_projected_patch_embeddings(image_path)
Compute image patch embeddings in the joint latent space, preserving the image grid.

Parameters image_path (Path) – Path to the image to compute embeddings for.

Return type Tuple[Tensor, Tuple[int, int]]

Returns A tuple containing the image patch embeddings and the shape of the original image
(width, height) before applying transforms.

load_and_transform_input_image(image_path, transform)
Read an image and apply the transform to it.

1. Read the image from the given path

2. Apply transform

3. Add the batch dimension

4. Move to the correct device

Parameters return_original_shape – Whether to return an extra tuple that has the original
shape of the image before the transforms. The tuple returned contains (width, height).

106 Chapter 26. API

hi-ml

Return type Tuple[Tensor, Tuple[int, int]]

class health_multimodal.image.ImageModel(img_encoder_type, joint_feature_size, freeze_encoder=False,
pretrained_model_path=None,
**downstream_classifier_kwargs)

Image encoder module

Initializes internal Module state, shared by both nn.Module and ScriptModule.

create_downstream_classifier(**kwargs)
Create the classification module for the downstream task.

Return type MultiTaskModel
forward(x)

Defines the computation performed at every call.

Should be overridden by all subclasses.

Note: Although the recipe for forward pass needs to be defined within this function, one should call the
Module instance afterwards instead of this since the former takes care of running the registered hooks while
the latter silently ignores them.

Return type ImageModelOutput

get_patchwise_projected_embeddings(input_img, normalize)
Get patch-wise projected embeddings from the CNN model.

Parameters
• input_img (Tensor) – input tensor image [B, C, H, W].

• normalize (bool) – If True, the embeddings are L2-normalized.

Returns projected_embeddings tensor of embeddings in shape [batch, n_patches_h,
n_patches_w, feature_size].

Return type Tensor

train(mode=True)
Switch the model between training and evaluation modes.

Return type Any

health_multimodal.image.get_image_inference(image_model_type=ImageModelType.BIOVIL_T)
Create a ImageInferenceEngine for the image model.

Parameters image_model_type (ImageModelType) – The type of image model to use, BIOVIL or
BIOVIL_T.

The model is downloaded from the Hugging Face Hub. The engine can be used to get embeddings from text
prompts or masked token predictions.

Return type ImageInferenceEngine

26.2. Image processing 107

hi-ml

26.3 Text processing

text Text-related tools

26.3.1 health_multimodal.text

Text-related tools

inference_engine

utils

health_multimodal.text.inference_engine

Classes

TextInferenceEngine(tokenizer, text_model) Text inference class that implements functionalities re-
quired to extract sentence embedding, similarity and
MLM prediction tasks.

class health_multimodal.text.inference_engine.TextInferenceEngine(tokenizer, text_model)
Text inference class that implements functionalities required to extract sentence embedding, similarity and MLM
prediction tasks.

Parameters
• tokenizer (BertTokenizer) – A BertTokenizer object.

• text_model (BertForMaskedLM) – Text model either default HuggingFace class

get_embeddings_from_prompt(prompts, normalize=True, verbose=True)
Generate L2-normalised embeddings for a list of input text prompts.

Parameters
• prompts (Union[str, List[str]]) – Input text prompt(s) either in string or list of string

format.

• normalize (bool) – If True, L2-normalise the embeddings.

• verbose (bool) – If set to True, tokenized words are displayed in the console.

Return type Tensor

Returns Tensor of shape (batch_size, embedding_size).

get_pairwise_similarities(prompt_set_1, prompt_set_2)
Compute pairwise cosine similarities between the embeddings of the given prompts.

Return type Tensor

is_in_eval()
Returns True if the model is in eval mode.

Return type bool

108 Chapter 26. API

hi-ml

predict_masked_tokens(prompts)
Predict masked tokens for a single or list of input text prompts.

Requires models to be trained with a MLM prediction head.

Parameters prompts (Union[str, List[str]]) – Input text prompt(s) either in string or list of
string format.

Return type List[List[str]]

Returns Predicted token candidates (Top-1) at masked position.

tokenize_input_prompts(prompts, verbose=True)
Tokenizes the input sentence(s) and adds special tokens as defined by the tokenizer. :type prompts:
Union[str, List[str]] :param prompts: Either a string containing a single sentence, or a list of strings
each containing

a single sentence. Note that this method will not correctly tokenize multiple sentences if they are
input as a single string.

Parameters verbose (bool) – If set to True, will log the sentence after tokenization.

Return type Any

Returns A 2D tensor containing the tokenized sentences

health_multimodal.text.utils

Functions

get_bert_inference([bert_encoder_type]) Create a TextInferenceEngine for a text encoder
model.

get_biovil_t_bert() Load the BioViL-T Bert model and tokenizer from the
Hugging Face Hub.

get_cxr_bert()
Load the CXR-BERT model and tokenizer from the
Hugging Face Hub.

Classes

BertEncoderType(value) An enumeration.

class health_multimodal.text.utils.BertEncoderType(value)
An enumeration.

health_multimodal.text.utils.get_bert_inference(bert_encoder_type=BertEncoderType.BIOVIL_T_BERT)
Create a TextInferenceEngine for a text encoder model.

Parameters bert_encoder_type (BertEncoderType) – The type of text encoder model to use,
CXR_BERT or BIOVIL_T_BERT.

The model is downloaded from the Hugging Face Hub. The engine can be used to get embeddings from text
prompts or masked token predictions.

Return type TextInferenceEngine

26.3. Text processing 109

https://huggingface.co/microsoft/BiomedVLP-BioViL-T
https://huggingface.co/microsoft/BiomedVLP-CXR-BERT-specialized

hi-ml

health_multimodal.text.utils.get_biovil_t_bert()
Load the BioViL-T Bert model and tokenizer from the Hugging Face Hub.

Return type Tuple[CXRBertTokenizer, CXRBertModel]

health_multimodal.text.utils.get_cxr_bert()
Load the CXR-BERT model and tokenizer from the Hugging Face Hub.

Return type Tuple[CXRBertTokenizer, CXRBertModel]

io

health_multimodal.text.data.io

Classes

TextInput(tokenizer) Text input class that can be used for inference and de-
ployment.

class health_multimodal.text.data.io.TextInput(tokenizer)
Text input class that can be used for inference and deployment.

Implements tokenizer related operations and ensure that input strings conform with the standards expected from
a BERT model.

Parameters tokenizer (BertTokenizer) – A BertTokenizer object.

assert_special_tokens_not_present(prompt)
Check if the input prompts contain special tokens.

Return type None

tokenize_input_prompts(prompts, verbose)
Tokenizes the input sentence(s) and adds special tokens as defined by the tokenizer. :type prompts:
Union[str, List[str]] :param prompts: Either a string containing a single sentence, or a list of strings
each containing

a single sentence. Note that this method will not correctly tokenize multiple sentences if they are
input as a single string.

Parameters verbose (bool) – If set to True, will log the sentence after tokenization.

Return type Any

Returns A 2D tensor containing the tokenized sentences

configuration_cxrbert

modelling_cxrbert

110 Chapter 26. API

https://huggingface.co/microsoft/BiomedVLP-BioViL-T
https://huggingface.co/microsoft/BiomedVLP-CXR-BERT-specialized

hi-ml

health_multimodal.text.model.configuration_cxrbert

Classes

CXRBertConfig([projection_size]) Config class for CXR-BERT model.
CXRBertTokenizer(**kwargs)

class health_multimodal.text.model.configuration_cxrbert.CXRBertConfig(projection_size=128,
**kwargs)

Config class for CXR-BERT model.

Parameters projection_size (int) – Dimensionality of the joint latent space.

class health_multimodal.text.model.configuration_cxrbert.CXRBertTokenizer(**kwargs)

health_multimodal.text.model.modelling_cxrbert

Classes

BertProjectionHead(config) Projection head to be used with BERT CLS token.
CXRBertModel(config) Implements the CXR-BERT model outlined in the

manuscript: Boecking et al. “Making the Most of Text
Semantics to Improve Biomedical Vision-Language
Processing”, 2022 https://link.springer.com/chapter/10.
1007/978-3-031-20059-5_1.

CXRBertOutput

class health_multimodal.text.model.modelling_cxrbert.BertProjectionHead(config)
Projection head to be used with BERT CLS token.

This is similar to BertPredictionHeadTransform in HuggingFace.

Parameters config (CXRBertConfig) – Configuration for BERT.

Initializes internal Module state, shared by both nn.Module and ScriptModule.

forward(hidden_states)
Defines the computation performed at every call.

Should be overridden by all subclasses.

Note: Although the recipe for forward pass needs to be defined within this function, one should call the
Module instance afterwards instead of this since the former takes care of running the registered hooks while
the latter silently ignores them.

Return type Tensor

class health_multimodal.text.model.modelling_cxrbert.CXRBertModel(config)
Implements the CXR-BERT model outlined in the manuscript: Boecking et al. “Making the Most of Text Se-
mantics to Improve Biomedical Vision-Language Processing”, 2022 https://link.springer.com/chapter/10.1007/
978-3-031-20059-5_1

26.3. Text processing 111

https://link.springer.com/chapter/10.1007/978-3-031-20059-5_1
https://link.springer.com/chapter/10.1007/978-3-031-20059-5_1
https://link.springer.com/chapter/10.1007/978-3-031-20059-5_1
https://link.springer.com/chapter/10.1007/978-3-031-20059-5_1

hi-ml

Extends the HuggingFace BertForMaskedLM model by adding a separate projection head. The projection
“[CLS]” token is used to align the latent vectors of image and text modalities.

Initializes internal Module state, shared by both nn.Module and ScriptModule.

config_class
alias of health_multimodal.text.model.configuration_cxrbert.CXRBertConfig

forward(input_ids, attention_mask, token_type_ids=None, position_ids=None, head_mask=None,
inputs_embeds=None, output_attentions=None, output_hidden_states=None,
output_cls_projected_embedding=None, return_dict=None, **kwargs)

The [BertForMaskedLM] forward method, overrides the __call__ special method.

<Tip>

Although the recipe for forward pass needs to be defined within this function, one should call the [Module]
instance afterwards instead of this since the former takes care of running the pre and post processing steps
while the latter silently ignores them.

</Tip>

Parameters
• input_ids (torch.LongTensor of shape (batch_size, sequence_length)) – Indices of input

sequence tokens in the vocabulary.

Indices can be obtained using [BertTokenizer]. See [PreTrainedTokenizer.encode] and
[PreTrainedTokenizer.__call__] for details.

[What are input IDs?](../glossary#input-ids)

• attention_mask (torch.FloatTensor of shape (batch_size, sequence_length), optional) –
Mask to avoid performing attention on padding token indices. Mask values selected in [0,
1]:

– 1 for tokens that are not masked,

– 0 for tokens that are masked.

[What are attention masks?](../glossary#attention-mask)

• token_type_ids (torch.LongTensor of shape (batch_size, sequence_length), optional)
– Segment token indices to indicate first and second portions of the inputs. Indices are
selected in [0, 1]:

– 0 corresponds to a sentence A token,

– 1 corresponds to a sentence B token.

[What are token type IDs?](../glossary#token-type-ids)

• position_ids (torch.LongTensor of shape (batch_size, sequence_length), optional) – In-
dices of positions of each input sequence tokens in the position embeddings. Selected in
the range [0, config.max_position_embeddings - 1].

[What are position IDs?](../glossary#position-ids)

• head_mask (torch.FloatTensor of shape (num_heads,) or (num_layers, num_heads), op-
tional) – Mask to nullify selected heads of the self-attention modules. Mask values selected
in [0, 1]:

– 1 indicates the head is not masked,

– 0 indicates the head is masked.

112 Chapter 26. API

hi-ml

• inputs_embeds (torch.FloatTensor of shape (batch_size, sequence_length, hidden_size),
optional) – Optionally, instead of passing input_ids you can choose to directly pass an
embedded representation. This is useful if you want more control over how to convert in-
put_ids indices into associated vectors than the model’s internal embedding lookup matrix.

• output_attentions (bool, optional) – Whether or not to return the attentions tensors of
all attention layers. See attentions under returned tensors for more detail.

• output_hidden_states (bool, optional) – Whether or not to return the hidden states of
all layers. See hidden_states under returned tensors for more detail.

• return_dict (bool, optional) – Whether or not to return a [~file_utils.ModelOutput] in-
stead of a plain tuple.

• labels (torch.LongTensor of shape (batch_size, sequence_length), optional) – Labels
for computing the masked language modeling loss. Indices should be in [-100, 0, . . . ,
config.vocab_size] (see input_ids docstring) Tokens with indices set to -100 are ignored
(masked), the loss is only computed for the tokens with labels in [0, . . . , config.vocab_size]

Returns
A [transformers.modeling_outputs.MaskedLMOutput] or a tuple of torch.FloatTensor (if re-
turn_dict=False is passed or when config.return_dict=False) comprising various elements
depending on the configuration ([BertConfig]) and inputs.

• loss (torch.FloatTensor of shape (1,), optional, returned when labels is provided) – Masked
language modeling (MLM) loss.

• logits (torch.FloatTensor of shape (batch_size, sequence_length, config.vocab_size)) –
Prediction scores of the language modeling head (scores for each vocabulary token before
SoftMax).

• hidden_states (tuple(torch.FloatTensor), optional, returned when out-
put_hidden_states=True is passed or when config.output_hidden_states=True) – Tuple
of torch.FloatTensor (one for the output of the embeddings + one for the output of each
layer) of shape (batch_size, sequence_length, hidden_size).

Hidden-states of the model at the output of each layer plus the initial embedding outputs.

• attentions (tuple(torch.FloatTensor), optional, returned when output_attentions=True is
passed or when config.output_attentions=True) – Tuple of torch.FloatTensor (one for each
layer) of shape (batch_size, num_heads, sequence_length, sequence_length).

Attentions weights after the attention softmax, used to compute the weighted average in the
self-attention heads.

Return type [transformers.modeling_outputs.MaskedLMOutput] or tuple(torch.FloatTensor)

Example:

```python >>> from transformers import BertTokenizer, BertForMaskedLM >>> import torch

>>> tokenizer = BertTokenizer.from_pretrained("bert-base-uncased")
>>> model = BertForMaskedLM.from_pretrained("bert-base-uncased")

>>> inputs = tokenizer("The capital of France is [MASK].", return_tensors="pt")
>>> labels = tokenizer("The capital of France is Paris.", return_tensors="pt")[
→˓"input_ids"]

26.3. Text processing 113



hi-ml

>>> outputs = model(**inputs, labels=labels)
>>> loss = outputs.loss
>>> logits = outputs.logits
```

get_projected_text_embeddings(input_ids, attention_mask, normalize_embeddings=True)
Returns l2-normalised projected cls token embeddings for the given input token ids and attention mask.
The joint latent space is trained using a contrastive objective between image and text data modalities.

Parameters
• input_ids (Tensor) – (batch_size, sequence_length)

• attention_mask (Tensor) – (batch_size, sequence_length)

• normalize_embeddings (bool) – Whether to l2-normalise the embeddings.

Return type Tensor

Returns (batch_size, projection_size)

class health_multimodal.text.model.modelling_cxrbert.CXRBertOutput

class health_multimodal.text.CXRBertConfig(projection_size=128, **kwargs)
Config class for CXR-BERT model.

Parameters projection_size (int) – Dimensionality of the joint latent space.

class health_multimodal.text.CXRBertModel(config)
Implements the CXR-BERT model outlined in the manuscript: Boecking et al. “Making the Most of Text Se-
mantics to Improve Biomedical Vision-Language Processing”, 2022 https://link.springer.com/chapter/10.1007/
978-3-031-20059-5_1

Extends the HuggingFace BertForMaskedLM model by adding a separate projection head. The projection
“[CLS]” token is used to align the latent vectors of image and text modalities.

Initializes internal Module state, shared by both nn.Module and ScriptModule.

config_class
alias of health_multimodal.text.model.configuration_cxrbert.CXRBertConfig

forward(input_ids, attention_mask, token_type_ids=None, position_ids=None, head_mask=None,
inputs_embeds=None, output_attentions=None, output_hidden_states=None,
output_cls_projected_embedding=None, return_dict=None, **kwargs)

The [BertForMaskedLM] forward method, overrides the __call__ special method.

<Tip>

Although the recipe for forward pass needs to be defined within this function, one should call the [Module]
instance afterwards instead of this since the former takes care of running the pre and post processing steps
while the latter silently ignores them.

</Tip>

Parameters
• input_ids (torch.LongTensor of shape (batch_size, sequence_length)) – Indices of input

sequence tokens in the vocabulary.

Indices can be obtained using [BertTokenizer]. See [PreTrainedTokenizer.encode] and
[PreTrainedTokenizer.__call__] for details.

[What are input IDs?](../glossary#input-ids)

114 Chapter 26. API

https://link.springer.com/chapter/10.1007/978-3-031-20059-5_1
https://link.springer.com/chapter/10.1007/978-3-031-20059-5_1

hi-ml

• attention_mask (torch.FloatTensor of shape (batch_size, sequence_length), optional) –
Mask to avoid performing attention on padding token indices. Mask values selected in [0,
1]:

– 1 for tokens that are not masked,

– 0 for tokens that are masked.

[What are attention masks?](../glossary#attention-mask)

• token_type_ids (torch.LongTensor of shape (batch_size, sequence_length), optional)
– Segment token indices to indicate first and second portions of the inputs. Indices are
selected in [0, 1]:

– 0 corresponds to a sentence A token,

– 1 corresponds to a sentence B token.

[What are token type IDs?](../glossary#token-type-ids)

• position_ids (torch.LongTensor of shape (batch_size, sequence_length), optional) – In-
dices of positions of each input sequence tokens in the position embeddings. Selected in
the range [0, config.max_position_embeddings - 1].

[What are position IDs?](../glossary#position-ids)

• head_mask (torch.FloatTensor of shape (num_heads,) or (num_layers, num_heads), op-
tional) – Mask to nullify selected heads of the self-attention modules. Mask values selected
in [0, 1]:

– 1 indicates the head is not masked,

– 0 indicates the head is masked.

• inputs_embeds (torch.FloatTensor of shape (batch_size, sequence_length, hidden_size),
optional) – Optionally, instead of passing input_ids you can choose to directly pass an
embedded representation. This is useful if you want more control over how to convert in-
put_ids indices into associated vectors than the model’s internal embedding lookup matrix.

• output_attentions (bool, optional) – Whether or not to return the attentions tensors of
all attention layers. See attentions under returned tensors for more detail.

• output_hidden_states (bool, optional) – Whether or not to return the hidden states of
all layers. See hidden_states under returned tensors for more detail.

• return_dict (bool, optional) – Whether or not to return a [~file_utils.ModelOutput] in-
stead of a plain tuple.

• labels (torch.LongTensor of shape (batch_size, sequence_length), optional) – Labels
for computing the masked language modeling loss. Indices should be in [-100, 0, . . . ,
config.vocab_size] (see input_ids docstring) Tokens with indices set to -100 are ignored
(masked), the loss is only computed for the tokens with labels in [0, . . . , config.vocab_size]

Returns
A [transformers.modeling_outputs.MaskedLMOutput] or a tuple of torch.FloatTensor (if re-
turn_dict=False is passed or when config.return_dict=False) comprising various elements
depending on the configuration ([BertConfig]) and inputs.

• loss (torch.FloatTensor of shape (1,), optional, returned when labels is provided) – Masked
language modeling (MLM) loss.

26.3. Text processing 115

hi-ml

• logits (torch.FloatTensor of shape (batch_size, sequence_length, config.vocab_size)) –
Prediction scores of the language modeling head (scores for each vocabulary token before
SoftMax).

• hidden_states (tuple(torch.FloatTensor), optional, returned when out-
put_hidden_states=True is passed or when config.output_hidden_states=True) – Tuple
of torch.FloatTensor (one for the output of the embeddings + one for the output of each
layer) of shape (batch_size, sequence_length, hidden_size).

Hidden-states of the model at the output of each layer plus the initial embedding outputs.

• attentions (tuple(torch.FloatTensor), optional, returned when output_attentions=True is
passed or when config.output_attentions=True) – Tuple of torch.FloatTensor (one for each
layer) of shape (batch_size, num_heads, sequence_length, sequence_length).

Attentions weights after the attention softmax, used to compute the weighted average in the
self-attention heads.

Return type [transformers.modeling_outputs.MaskedLMOutput] or tuple(torch.FloatTensor)

Example:

```python >>> from transformers import BertTokenizer, BertForMaskedLM >>> import torch

>>> tokenizer = BertTokenizer.from_pretrained("bert-base-uncased")
>>> model = BertForMaskedLM.from_pretrained("bert-base-uncased")

>>> inputs = tokenizer("The capital of France is [MASK].", return_tensors="pt")
>>> labels = tokenizer("The capital of France is Paris.", return_tensors="pt")[
→˓"input_ids"]

>>> outputs = model(**inputs, labels=labels)
>>> loss = outputs.loss
>>> logits = outputs.logits
```

get_projected_text_embeddings(input_ids, attention_mask, normalize_embeddings=True)
Returns l2-normalised projected cls token embeddings for the given input token ids and attention mask.
The joint latent space is trained using a contrastive objective between image and text data modalities.

Parameters
• input_ids (Tensor) – (batch_size, sequence_length)

• attention_mask (Tensor) – (batch_size, sequence_length)

• normalize_embeddings (bool) – Whether to l2-normalise the embeddings.

Return type Tensor

Returns (batch_size, projection_size)

class health_multimodal.text.CXRBertOutput

class health_multimodal.text.CXRBertTokenizer(**kwargs)

class health_multimodal.text.TextInferenceEngine(tokenizer, text_model)
Text inference class that implements functionalities required to extract sentence embedding, similarity and MLM
prediction tasks.

Parameters
• tokenizer (BertTokenizer) – A BertTokenizer object.

116 Chapter 26. API

hi-ml

• text_model (BertForMaskedLM) – Text model either default HuggingFace class

get_embeddings_from_prompt(prompts, normalize=True, verbose=True)
Generate L2-normalised embeddings for a list of input text prompts.

Parameters
• prompts (Union[str, List[str]]) – Input text prompt(s) either in string or list of string

format.

• normalize (bool) – If True, L2-normalise the embeddings.

• verbose (bool) – If set to True, tokenized words are displayed in the console.

Return type Tensor

Returns Tensor of shape (batch_size, embedding_size).

get_pairwise_similarities(prompt_set_1, prompt_set_2)
Compute pairwise cosine similarities between the embeddings of the given prompts.

Return type Tensor

is_in_eval()
Returns True if the model is in eval mode.

Return type bool

predict_masked_tokens(prompts)
Predict masked tokens for a single or list of input text prompts.

Requires models to be trained with a MLM prediction head.

Parameters prompts (Union[str, List[str]]) – Input text prompt(s) either in string or list of
string format.

Return type List[List[str]]

Returns Predicted token candidates (Top-1) at masked position.

tokenize_input_prompts(prompts, verbose=True)
Tokenizes the input sentence(s) and adds special tokens as defined by the tokenizer. :type prompts:
Union[str, List[str]] :param prompts: Either a string containing a single sentence, or a list of strings
each containing

a single sentence. Note that this method will not correctly tokenize multiple sentences if they are
input as a single string.

Parameters verbose (bool) – If set to True, will log the sentence after tokenization.

Return type Any

Returns A 2D tensor containing the tokenized sentences

health_multimodal.text.get_bert_inference(bert_encoder_type=BertEncoderType.BIOVIL_T_BERT)
Create a TextInferenceEngine for a text encoder model.

Parameters bert_encoder_type (BertEncoderType) – The type of text encoder model to use,
CXR_BERT or BIOVIL_T_BERT.

The model is downloaded from the Hugging Face Hub. The engine can be used to get embeddings from text
prompts or masked token predictions.

Return type TextInferenceEngine

26.3. Text processing 117

hi-ml

26.4 Common utils

common General utils

26.4.1 health_multimodal.common

General utils

device

visualization

health_multimodal.common.device

Functions

get_module_device(module) Returns the device of the module

health_multimodal.common.device.get_module_device(module)
Returns the device of the module

Return type device

health_multimodal.common.visualization

Functions

plot_phrase_grounding_similarity_map(. . . [,
. . .])

Plot visualization of the input image, the similarity
heatmap and the heatmap isolines.

health_multimodal.common.visualization.plot_phrase_grounding_similarity_map(image_path,
similarity_map,
bboxes=None)

Plot visualization of the input image, the similarity heatmap and the heatmap isolines.

Parameters
• image_path (Path) – Path to the input image.

• similarity_map (ndarray) – Phase grounding similarity map of the same size as the im-
age.

• bboxes (Optional[List[Tuple[float, float, float, float]]]) – Optional list of bound-
ing boxes to plot on the image.

Return type Figure

118 Chapter 26. API

CHAPTER

TWENTYSEVEN

TRAINING OF SELF-SUPERVISED MODELS

The code present in the InnerEye/ML/SSL folder allows you to train self-supervised models using SimCLR or BYOL.
This code runs as a “ bring-your-own-model” self-contained module (see docs/bring_your_own_model.md) .

Here, we provide implementations for four datasets to get you kickstarted with self-supervised models:

• Toy CIFAR datasets: CIFAR10 and CIFAR100

• Medical Chest-Xray datasets: RSNA Pneumonia Detection Challenge data (30k scans, labels indicating presence
of pneumonia), NIH Chest-Xray (112k Chest-Xray scans) or CheXpert (228k scans).

27.1 Multi-dataset support

During self-supervised training, a separate linear classifier is trained on top of learnt image embeddings. In this way,
users can continuously monitor the representativeness of learnt image embeddings for a given downstream classification
task. More importantly, the framework allows users to specify multiple datasets and data loaders for SimCLR/BYOL
training and evaluation. For instance, a BYOL encoder can be learnt using a dataset that does not contain any target
labels and embeddings can be evaluated throughout training on a separate dataset containing class labels. To enable
this functionality, our SSLContainer takes two dataset names parameters: ssl_training_dataset_name to indicate
which dataset to use for SSL training and linear_head_dataset_name to indicate which dataset for the classification
task used to monitor embeddings quality during training.

27.2 Quick start guide

Here we described how to quickly start a training job with our ready made configs.

27.2.1 Example 1: training a SimCLR or BYOL model on CIFAR10

To kick-off a training for a SimCLR and BYOL models on CIFAR10, simply run

python ML/runner.py --model=CIFAR10BYOL
python ML/runner.py --model=CIFAR10SimCLR

For this dataset, it will automatically take care of downloading the dataset to your machine prior to starting training.

119

https://github.com/microsoft/InnerEye-DeepLearning/tree/main/InnerEye/ML/SSL
http://proceedings.mlr.press/v119/chen20j/chen20j.pdf
https://proceedings.neurips.cc/paper/2020/file/f3ada80d5c4ee70142b17b8192b2958e-Paper.pdf
https://github.com/microsoft/InnerEye-DeepLearning/blob/main/docs/bring_your_own_model.md
https://www.cs.toronto.edu/~kriz/cifar.html
https://www.cs.toronto.edu/~kriz/cifar.html
https://www.kaggle.com/c/rsna-pneumonia-detection-challenge/overview
https://www.kaggle.com/nih-chest-xrays/data
https://stanfordmlgroup.github.io/competitions/chexpert/

hi-ml

27.2.2 Example 2: training a BYOL model on Chest-Xray data

Step 0: Get the data

If you run on your local machine:

Prior to starting training a model on this dataset, you will need to download it from Kaggle to your machine:

• To use the RSNA Pneumonia Detection Challenge data: please download from here. Make sure to download
all images and the dataset.csv file to your data folder. Please note that the labels are here merely used for
monitoring purposes.

• To get the NIH dataset: please download from here. Make sure you include also the csv files in your data folder,
the code assumes the dataset files and all the images lie in your data folder as downloaded from Kaggle. In
particular, do not modify the original csv filenames (e.g. the code expects to find the Data_Entry_2017.csv
file within the data directory).

• To get the CheXpert data: please download from here, the code assumes the dataset files and all the images lie
in your data folder as downloaded.

If you run on AML

In order to train models on AML you will need to upload the datasets listed above to your storage account and get their
dataset_id to pass to your model config.

Step 1: Update your model config

We provide sample configs to train models on NIH data both for BYOL and SimCLR. You can use them as they are
except for the dataset location fields:

• If you’re running locally set the local_dataset parameter to point to your data folder.

• If you’re running on AML: you need to update the RSNA_AZURE_DATASET_ID and NIH_AZURE_DATASET_ID
variables to point to the name of the NIH and Kaggle dataset in your own workspace.

Step 2: Launch the training job

Example to train a SSL model with BYOL on the NIH dataset and monitor the embeddings quality on the Kaggle RSNA
Pneumonia Challenge classification task:

python ML/runner.py --model=NIH_RSNA_BYOL

27.3 Configuring your own SSL models:

27.3.1 About SSLContainer configuration

All SSL models are derived from the SSLcontainer class. See the config class in ML/configs/ssl for some examples of
specific model configurations (all derived from this container).

If you wish to create your own model config for SSL training, you will need to create a child class and parametrize it
with the following available arguments:

120 Chapter 27. Training of self-supervised models

https://www.kaggle.com/c/rsna-pneumonia-detection-challenge/data?select=stage_2_train_images
https://www.kaggle.com/nih-chest-xrays/data
https://stanfordmlgroup.github.io/competitions/chexpert/
https://github.com/microsoft/InnerEye-DeepLearning/blob/main/InnerEye/ML/SSL/lightning_containers/ssl_container.py
https://github.com/microsoft/InnerEye-DeepLearning/tree/main/InnerEye/ML/configs/ssl

hi-ml

• ssl_training_dataset_name: the name of the dataset to train the SSL encoder on, a member of the SSL-
DatasetName class (don’t forget to update this class if you’re adding a new dataset ;)),

• linear_head_dataset_name: the name of the dataset to train to linear head on top of the classifier for moni-
toring purposes,

• azure_dataset_id: the id of the AML dataset to use for SSL training,

• extra_azure_dataset_ids: dataset_id to use for linear head training, expected to be provided as a list [data-
id],

• ssl_encoder: name of the encoder to train, member of EncoderName class, currently supported are resnet50,
resnet101 and densenet121,

• ssl_training_type: which SSL algorithm to use, member of SSLType choice between BYOL and SimCLR,

• ssl_training_batch_size: batch size of SSL training. This is the number of examples processed by a single
GPU. Multiply this by the number of GPUs to get the effective batch size.

• linear_head_batch_size: batch size for linear head training (used for monitor of SSL embeddings quality).
This is the number of examples processed by a single GPU. Multiply this by the number of GPUs to get the
effective batch size.

• ssl_augmentation_config: path to yaml config for augmentation to use during SSL training. Only used for
NIH/Kaggle datasets.

• linear_head_augmentation_config: path to yaml config for augmentation to use for linear head training.
Only used for NIH/Kaggle datasets,

• use_balanced_binary_loss_for_linear_head: whether to use balanced loss for linear head training,

• random_seed: seed for the run,

• num_epochs: number of epochs to train for.

In case you wish to first test your model locally, here some optional arguments that can be useful:

• local_dataset: path to local dataset, if passed the azure dataset will be ignored

• is_debug_model: if True it will only run on the first batch of each epoch

• drop_last: if False (True by default) it will keep the last batch also if incomplete

27.3.2 Creating your own datamodules:

To use this code with your own data, you will need to:

1. Define your own Lightening Container that inherits from SSLContainer as described in the paragraph above.

2. Create a dataset class that reads your new dataset, inheriting from both VisionDataset and
DatasetWithReturnIndex. See for example how we constructed RSNAKaggleCXR class. WARNING:
the first positional argument of your dataset class constructor MUST be the data directory (“root”), as
VisionDataModule expects this in the prepare_data step.

3. In your own container update the DatasetToClassMapping member of the class so that the code knows which
data class to associate to your new dataset name.

4. Create a yaml configuration file that contains the augmentations specific to your dataset. The yaml
file will be consumed by the create_transforms_from_config function defined in the InnerEye.ML.
augmentations.transform_pipelinemodule (see next paragraph for more details). Alternatively, overwrite
the _get_transforms method. To simplify this step, we have defined a series of standard operations in SSL/
transforms_utils.py . You could for example construct a transform pipeline similar to the one created inside
create_transform_from_config inside your own method.

27.3. Configuring your own SSL models: 121

hi-ml

5. Update all necessary parameters in the model config (cf. previous paragraph)

Once all these steps are updated, the code in the base SSLContainer class will take care of creating the corresponding
datamodules for SSL training and linear head monitoring.

27.3.3 About the augmentation configuration yaml file

The augmentations used for SSL training for all Chest-X-rays models are parametrized via a yaml config file. The
path to this config as to be passed in the model config (cf. section above). We provide two defaults configs:
cxr_ssl_encoder_augmentations.yaml is used to define the augmentations used for BYOL/SimCLR training;
the cxr_linear_head_augmentations.yaml config defines the augmentations to used for the training of the linear
head (used for monitoring purposes). The meaning of each config argument is detailed in ssl_model_config.py

WARNING: this file will be ignored for CIFAR examples where we use the default pl-bolts augmentations.

27.4 Finetuning a linear head on top of a pretrained SSL model.

Alongside with the modules to train your SSL models, we also provide examplary modules that allow you to build
a classifier on top of a pretrained SSL model. The base class for these modules is SSLClassifierContainer. It
builds on top of the SSLContainer with additional command line arguments allowing you to specify where to find the
checkpoint for your pretrained model. For this you have two options:

• If you are running locally, you can provide the local path to your pretrained model checkpoint via
--src_checkpoint.

• If your are running on AML, use the pretraining_run_recovery_id field. Providing this field, will mean
that AML will automatically download the checkpoints to the current node, will pick the latest checkpoint to
build the classifier on top. Beware not to confuse pretraining_run_recovery_id with run_recovery_id
as the latter is use to continue training on the same model (which is not the case here).

The code will then automatically extract the encoder part of the loaded SSL model to initialize your classifier. You can
then also choose whether you want to freeze the weights of your encoder or not via the --freeze_encoder=True/
False argument. By default, this is set to True.

27.4.1 Example for CIFAR

We provide an example of such a classifier container for CIFAR named SSLClassifierCIFAR. To launch a finetuning
run for this model on CIFAR10, just run

python ML/runner.py --model=SSLClassifierCIFAR --pretraining_run_recovery_id={THE_ID_TO_
→˓YOUR_SSL_TRAINING_JOB}

27.4.2 Example for CXR

Similarly, we provide class to allow you to simply start a finetuning job for CXR model in CXRImageClassifier. By
default, this will launch a finetuning job on the RSNA Pneumonia dataset. To start the run:

python ML/runner.py --model=CXRImageClassifier --pretraining_run_recovery_id={THE_ID_TO_
→˓YOUR_SSL_TRAINING_JOB}

or for a local run

122 Chapter 27. Training of self-supervised models

hi-ml

python ML/runner.py --model=CXRImageClassifier --src_checkpoint={LOCAL_PATH_TO_YOUR_SSL_
→˓CHECKPOINT}

27.4. Finetuning a linear head on top of a pretrained SSL model. 123

hi-ml

124 Chapter 27. Training of self-supervised models

CHAPTER

TWENTYEIGHT

CONTRIBUTING TO THIS TOOLBOX

We welcome all contributions that help us achieve our aim of speeding up Machine Learning (ML) / AI research in
health and life sciences.

Examples of contributions are

• Data loaders for specific health & life sciences data

• Network architectures and components for deep learning models

• Tools to analyze and/or visualize data

• Bug reports

• Documentation improvements, including fixing typos

• Suggestions about codebase improvements

All contributions to the toolbox need to come with unit tests, and will be reviewed when a pull request is started. If in
doubt, reach out to the core hi-ml team before starting your work.

Please look through the existing folder structure to find a good home for your contribution.

For a full set of design and guidelines, please check our coding guidelines documentation.

125

https://github.com/microsoft/hi-ml/discussions/new
https://github.com/microsoft/hi-ml/blob/main/docs/source/coding_guidelines.md

hi-ml

126 Chapter 28. Contributing to this toolbox

CHAPTER

TWENTYNINE

DESIGN AND CODING GUIDELINES

29.1 Design Phase

For non-trivial changes, please communicate your plans early on to reach maximum impact and to avoid duplicate
work. Create an issue or a discussion that describes the problem that you are trying to solve, and describe why this
adds a positive contribution to the project.

Tag one of the core hi-ml team (@ant0nsc, @mebristo, @fepegar) to get input on your problem. In particular, you
should find out if this has already been worked on or thought about. This will help you to get to know about existing
code fragments that can simplify your task, and integrate better with existing code.

We recommend to work with a core hi-ml team member to create a design for your work. Depending on the size of
the task at hand, a design can be anywhere between a short description of your plan in a GitHub discussion or issue, or
it can be a shared document where you list your design options and invite feedback. Your design partner will later also
be well positioned to review your pull request (PR) because they will be already familiar with your plan.

When working on a large contribution, we suggest to break it down into a set of small PRs that are more manageable
for you and for the reviewers (see below in the section “Scope of PRs”)

29.2 Setting up your development environment

Please see our detailed instructions.

29.3 Coding Guidelines

29.3.1 Naming

Please follow the general PEP 8 Python rules for naming:

• Variables, function and method names should use snake_case (lower case with under scores separating words)

• Class names should follow PascalCase (first letter of each word capitalized).

To improve readability, functions or methods that return boolean values should follow a is_..., has_..., use...
pattern, like is_status_ok instead of ok.

127

https://github.com/microsoft/hi-ml/issues
https://github.com/microsoft/hi-ml/discussions
https://peps.python.org/pep-0008/

hi-ml

29.3.2 Static Analysis, Linting and Styling

We use flake8 as a linter, mypy and pyright for static typechecking, and black for styling. All these tools run as part
of the PR workflow, and must run without errors for a contribution to be accepted.

mypy requires that all functions and methods carry type annotations. See the mypy documentation for more information.

We highly recommend to run all those tools before pushing the latest changes to a PR. If you have make installed, you
can run both tools in one go via make check (from the repository root folder).

29.3.3 Black styling

We use black for styling all of our code. To pass the tests carried out in make check (or make black) you can run
the following command to reformat your changed file as per our guidelines:

black <path_to_python_file>

You can also run black on the whole repository by running the following command from the head of the repo:

black .

Black VS Code Integration

If you’re using VS Code as your IDE, you can avoid having to call black every time you want to style some files by
installing the black formatter extension and adding the following to your vscode settings.json file:

"[python]": {
"editor.formatOnSave": true,
"editor.defaultFormatter": "ms-python.black-formatter",

},

Now every time you save a file it will automatically be formatted by black.

Black pre-commit hook

If you do not style your code yourself, then the pre-commit hook on your PR will attempt to do this automatically.
Please be aware that this may cause conflicts if you’re working on an open pull request. We highly recommend styling
your code before submitting!

29.3.4 Documentation

For general information around docstrings, please check PEP 257.

We use Sphinx for generating documentation. We recommend using a VSCode extension for auto-generating documen-
tation templates, for example njpwerner.autodocstring. This extension is already pre-configured in our VSCode
workspace settings file.

Reminders about docstrings:

• There must be a separating line between a function description and the documentation for its parameters.

• In multi-line parameter descriptions, continuations on the next line must be indented.

128 Chapter 29. Design and Coding Guidelines

https://mypy.readthedocs.io/en/latest/getting_started.html#function-signatures-and-dynamic-vs-static-typing
https://marketplace.visualstudio.com/items?itemName=ms-python.black-formatter
https://peps.python.org/pep-0257/
https://marketplace.visualstudio.com/items?itemName=njpwerner.autodocstring

hi-ml

• Sphinx will merge the class description and the arguments of __init__ method. Hence, there is no need to
write any text in the docstring for __init__ other than the arguments.

• Use >>> to include code snippets.

To generate the Sphinx documentation on your machine, run

cd docs
make html

Then open the results in build/html/index.html.

Example:

class Foo:
"""This is the class description.

The following block will be pretty-printed by Sphinx. Note the space between >>> and␣
→˓the code!

Usage example:
>>> from module import Foo
>>> foo = Foo(bar=1.23)

"""

ANY_ATTRIBUTE = "what_ever."
"""Document class attributes after the attribute. Should end with a period."""

def __init__(self, bar: float = 0.5) -> None:
"""
:param bar: This is a description for the constructor argument.

Long descriptions should be indented.
"""
self.bar = bar

def method(self, arg: int) -> None:
"""Short method description, followed by an empty line. Sentences should end␣

→˓with a period.

Longer descriptions can be added as well.
Argument names like ``arg`` are rendered nicely if enclosed in double backticks.

:param arg: This is a description for the method argument.
Long descriptions should be indented.

:raises ValueError: If something bad happens.
"""
do_something() # comments should start with " # "

For more information, check the Sphinx-RTD tutorial.

29.3. Coding Guidelines 129

https://sphinx-rtd-tutorial.readthedocs.io/en/latest/docstrings.html

hi-ml

29.4 Testing

29.4.1 Why do we write unit tests?

If you think that there are sensitive parts in your code, where hidden errors can impact the project outcome, please take
your time to protect parts of your code. As the team grows, so does the number of users of the repository, and we may
not be able to monitor changes on a frequent basis, but your tests can ensure that the expected behavior is preserved. We
are not making it strictly mandatory, however, contributors should take into account that their code may have negative
downstream impact.

We do not need to test every part of the code depending on the project constraints, e.g., quality and test-coverage
vs learning and hypothesis-testing. However, we expect a justification in each PR for this decision and it should be
reviewed by team members. Please regularly monitor the code coverage results that are posted as comments on each
pull request.

In particular, please do write unit tests for anything that affects training /results, such as data preprocessing, losses, and
metrics.

29.4.2 Testing Do’s / Don’ts

• DO write unit tests for each new function or class that you add.

• DO extend unit tests for existing functions or classes if you change their core behaviour.

• DO try your best to write unit tests that are fast. Very often, this can be done by reducing data size to a minimum.
Also, it is helpful to avoid long-running integration tests, but try to test at the level of the smallest involved
function.

• DO ensure that your tests are designed in a way that they can pass on the local machine, even if they are relying
on specific cloud features. If required, use unittest.mock to simulate the cloud features, and hence enable the
tests to run successfully on your local machine.

• DO run all unit tests on your dev machine before submitting your changes. The test suite is designed to pass
completely also on your development machine.

• DO NOT rely only on the test results in the cloud (i.e., run test locally before submitting). Apart from the obvious
delay in getting your results, CI runs trigger AzureML runs on GPU machines that have a far higher CO2 footprint
than your dev machine.

• When fixing a bug, the suggested workflow is to first write a unit test that shows the invalid behaviour, and only
then start to code up the fix.

29.4.3 Testing of Scripts

Depending on the project needs, we may write scripts for doing one-off operations (as an example, have a look at
himl_download.py. How carefully should we test those?

• Any scripts that perform operations that we anticipate others to need as well should be designed for re-usability
and be tested. “Designed for re-use” here would mean, for example: The script should not contain any hard-
coded setup that is specific to my machine or user account. If that’s not achievable, document carefully what
others need to prepare so that they can run this script.

• Scripts are inherently difficult to test. Testing becomes a lot easier if the script is mainly a front-end to functions
that live somewhere else in the codebase.If the script is written as a thin wrapper around library functions, these
library functions can be tested in isolation as part of the normal unit test suite.

130 Chapter 29. Design and Coding Guidelines

https://github.com/microsoft/hi-ml/blob/main/hi-ml-azure/src/health_azure/himl_download.py

hi-ml

Writing arguments parsers is particularly error prone. Consider using automatically generated parsers, like we use in
the hi-ml: Starting point is a class that describes inputs to a function. A parser can be generated automatically from
these classes.

Lastly, if you are considering adding a script to your project, also consider the following: If the script should be called,
for example, after an AzureML run to collect results, can this be automated further, and make the script obsolete?
Reasons for this approach:

• People tend to forget that there is a script to do X already, and may re-do the task in question manually.

• Any script that requires input from the user also has a chance to be provided with the wrong input, leading to
friction or incorrect results. In a programmatic scenario, where the script is called automatically, this chance of
errors is greatly minimized.

29.5 What not to commit

• DO NOT check in files taken from or derived from private datasets.

• DO NOT check in any form of credentials, passwords or access tokens.

• Do not check in any code that contains absolute paths (for example, paths that only work on your machine).

• Avoid checking in large files (anything over 100 kB). If you need to commit large files, consider adding them via
Git LFS.

29.5.1 Jupyter Notebooks

Notebooks can easily become obsolete over time and may not work with code changes. Also, testing them is generally
difficult. Please follow these guidelines for notebooks:

• If you are planning to use a notebook, avoid committing into the repository unless it is part of a project demo.

• If the notebook is used to document results, then please render the notebook and place the results in a separate
document outside the repository.

• Bear in mind that notebooks are also an easy way of leaking sensitive data: They can for example contain images
derived from private datasets. You should clear the notebook outputs before committing it.

29.6 Review / Pull Requests

29.6.1 Scope of Pull Requests

PRs should ideally implement a single change. If in doubt, err on the side of making the PR too small, rather than too
big.

• Small PRs help reduce the load on the reviewer.

• Avoid adding unrelated changes to an existing PR.

• PRs should be modular: we can iterate on PRs, and any positive delta is a contribution.

Please follow the guidance on Github flow.

Try gauging the value of your contribution for yourself by asking the following questions:

• Will this change bring the team closer to achieving their project goals?

29.5. What not to commit 131

https://github.com/microsoft/hi-ml/blob/b742223102d6c9092b13b20eafa263cc91f99670/hi-ml-azure/src/health_azure/utils.py#L157-L167
https://git-lfs.github.com/
https://docs.github.com/en/get-started/quickstart/github-flow

hi-ml

• Will someone else understand my code?

• Will they be able to use my code?

• Will they be able to extend or build on top of my code?

29.6.2 Pull Request Process

• When creating a PR, do add a summary of your contribution in the PR description.

• The template PR description also contains a checklist for the PR author.

• Link your PR to a GitHub issue that describes the problem/feature that you are working on.

• For collecting early feedback on your work, please use a Draft Pull Request. These PRs are marked with a grey
icon in the Github UI, and send a clear signal that the code there is not yet ready for review. When submitting a
draft PR, all the checks will be run as for a normal PR.

• Once your work is ready for review, click the “Ready for Review” button on the Github PR page, and, if you
want, assign reviewers for your PR.

29.6.3 Pull Request Titles

To enable good auto-generated changelogs, we prefix all PR titles with a category string, like BUG: Fix out of
bounds error when using small images. Those category prefixes must be in upper case, followed by a colon
(:). Valid categories are

• ENH for enhancements, new capabilities

• BUG for bugfixes

• STY for stylistic changes (for example, refactoring) that do not impact the functionality

• DOC for changes to documentation only

• DEL for removing something from the codebase

• TEST for adding or modifying tests

• FIX to fix something that is not a BUG such as a typo

• MNT maintenance, to upgrade package version, packaging, linting, CI etc.

• PERF performance related

29.7 Notes on Branching

We should treat the main branch as a collection of code that is

• Of high-quality

• Readable and suitable for re-use

• Well documented

Use a dedicated dev branch for development, debugging and analysis work. Once you are sure that the work in the dev
branch adds enough value to reach our project objectives, then use a pull request to get your contribution into the main
branch.

132 Chapter 29. Design and Coding Guidelines

CHAPTER

THIRTY

SETTING UP THE DEVELOPMENT ENVIRONMENT

30.1 Development environment

We suggest using Visual Studio Code (VSCode), available for multiple platforms here. On Windows system, we rec-
ommend using WSL, the Windows Subsystem for Linux, because some PyTorch features are not available on Windows.
Inside VSCode, please install the extensions that are recommended for this project - they are available in .vscode/
extensions.json in the repository root.

30.2 Opening the repository

Once you have the repository on your computer, you can open either all projects at once or individual projects separately
in VSCode.

• To open all projects at once, use VSCode’s “Open Workspace from File”, and select himl-projects.
code-workspace.

• To open individual projects, use VSCode’s “Open Folder”, and select one of the folders hi-ml-azure, hi-ml,
or hi-ml-cpath

30.3 Creating a Conda environment

Different projects in this repository use different Conda environments:

• The himl Conda environment should be used for work on the hi-ml and hi-ml-azure projects.

• The HimlHisto Conda environment should be used for work on hi-ml-cpath.

Please select the right Python interpreter for your project (or all projects if using the himl-projectsworkspace) inside
VSCode, by choosing “Python: Select Interpreter” from the command palette (Ctrl-Shift-P on VSCode for Windows)

To create the Conda environment himl, please use either

conda env create --file hi-ml/environment.yml

or use make in the repository root folder:

make env

Please see the project-specific README files for instructions how to set up the other Conda environments.

133

https://code.visualstudio.com/

hi-ml

30.4 Installing pyright

We are using static typechecking for our code via mypy and pyright. The latter requires a separate installation outside
the Conda environment. For WSL, these are the required steps (see also here):

curl -o- https://raw.githubusercontent.com/nvm-sh/nvm/v0.38.0/install.sh | bash

Close your terminal and re-open it, then run:

nvm install node
npm install -g pyright

30.5 Using specific versions of hi-ml in your Python environments

If you’d like to test specific changes to the hi-ml package in your code, you can use two different routes:

• You can clone the hi-ml repository on your machine, and use hi-ml in your Python environment via a local
package install:

pip install -e <your_git_folder>/hi-ml

• You can consume an early version of the package from test.pypi.org via pip:

pip install --extra-index-url https://test.pypi.org/simple/ hi-ml==0.1.0.post165

• If you are using Conda, you can add an additional parameter for pip into the Conda environment.yml file like
this:

name: foo
dependencies:

- pip=20.1.1
- python=3.7.3
- pip:

- --extra-index-url https://test.pypi.org/simple/
- hi-ml==0.1.0.post165

30.6 Common things to do

The repository contains a makefile with definitions for common operations.

• make check: Run flake8, mypy and black on the repository.

• make test: Run flake8 and mypy on the repository, then all tests via pytest

• make pip: Install all packages for running and testing in the current interpreter.

• make conda: Update the hi-ml Conda environment and activate it

134 Chapter 30. Setting up the Development Environment

https://docs.microsoft.com/en-us/windows/dev-environment/javascript/nodejs-on-wsl

hi-ml

30.7 Building documentation

To build the sphinx documentation, you must have sphinx and related packages installed (see build_requirements.
txt in the repository root). Then run:

cd docs
make html

This will build all your documentation in docs/build/html.

30.8 Setting up your AzureML workspace

• In the browser, navigate to the AzureML workspace that you want to use for running your tests.

• In the top right section, there will be a dropdown menu showing the name of your AzureML workspace. Expand
that.

• In the panel, there is a link “Download config file”. Click that.

• This will download a file config.json. Move that file to both of the folders hi-ml/testhiml and hi-ml/
testazure The file config.json is already present in .gitignore, and will hence not be checked in.

30.9 Creating and Deleting Docker Environments in AzureML

• Passing a docker_base_image into submit_to_azure_if_needed causes a new image to be built and reg-
istered in your workspace (see docs for more information).

• To remove an environment use the az ml environment delete function in the AzureML CLI (note that all the
parameters need to be set, none are optional).

30.10 Testing

For all of the tests to work locally you will need to cache your AzureML credentials. One simple way to do this is to run
the example in src/health/azure/examples (i.e. run python elevate_this.py --message='Hello World'
--azureml or make example) after editing elevate_this.py to reference your compute cluster.

When running the tests locally, they can either be run against the source directly, or the source built into a package.

• To run the tests against the source directly in the local src folder, ensure that there is no wheel in the dist folder
(for example by running make clean). If a wheel is not detected, then the local src folder will be copied into
the temporary test folder as part of the test process.

• To run the tests against the source as a package, build it with make build. This will build the local src folder
into a new wheel in the dist folder. This wheel will be detected and passed to AzureML as a private package
as part of the test process.

30.7. Building documentation 135

https://docs.microsoft.com/en-us/azure/machine-learning/how-to-use-environments
https://docs.microsoft.com/en-us/cli/azure/ml/environment?view=azure-cli-latest#az_ml_environment_delete

hi-ml

30.10.1 Test discovery in VSCode

All tests in the repository should be picked up automatically by VSCode. In particular, this includes the tests in the
hi-ml-cpath folder, which are not always necessary when working on the core hi-ml projects.

30.11 Creating a New Release

To create a new package release, follow these steps:

• On the repository’s github page, click on “Releases”, then “Draft a new release”

• In the “Draft a new release” page, click “Choose a tag”. In the text box, enter a (new) tag name that has the desired
version number, plus a “v” prefix. For example, to create package version 0.12.17, create a tag v0.12.17. Then
choose “+ Create new tag” below the text box.

• Enter a “Release title” that highlights the main feature(s) of this new package version.

• Click “Auto-generate release notes” to pull in the titles of the Pull Requests since the last release.

• Before the auto-generated “What’s changed” section, add a few sentences that summarize what’s new.

• Click “Publish release”

30.12 Troubleshooting

30.12.1 Debugging a test in VSCode fails on Windows

• Symptom: Debugging just does not seem to do anything

• Check: Debug Console shows error from _sqlite3 import *: ImportError: DLL load failed:
The specified module could not be found.

• Fix: see here

• Run conda info --envs to see where your Conda environment lives, then place sqlite3.dll into the DLLs
folder inside of the environment

136 Chapter 30. Setting up the Development Environment

https://stackoverflow.com/questions/54876404/unable-to-import-sqlite3-using-anaconda-python

CHAPTER

THIRTYONE

SOFTWARE DEVELOPMENT PROCESS

This document provides a high-level overview of the software development process that our team uses for their repos-
itories (most importantly InnerEye-DeepLearning and hi-ml).

For detailed guidance for developers, please refer to the coding guidelines.

31.1 Version Control

Software code versioning is done via GitHub. The code with the highest level of quality control is in the “main” branch.
Ongoing development happens in separate branches. Once development in the branch is finished, a Pull Request (PR)
process is started to integrate the branch into “main”.

31.2 Development Process

The design and development of the software in this repository is roughly separated into an initiation, prototyping, and
a finalization phase. The initiation phase can be skipped for minor changes, for example an update to documentation.

31.2.1 Initiation

During the initiation phase, the following steps are carried out:

• Collection of a set of requirements.

• Creating a suggested design for the change.

• Review of the design with member of the core team.

The deliverables of this phase are a detailed design of the proposed change in a GitHub Issue or a separate document.

31.2.2 Prototyping

The engineering owner of the proposed change will create a branch of the current codebase. This branch is separate
from the released (main) branch to not affect any current functionality. In this branch, the engineer will carry out the
changes as proposed in the design document.

The engineer will also add additional software tests at different levels (unit tests, integration tests) as appropriate for
the design. These tests ensure that the proposed functionality will be maintained in the future.

The deliverable of this phase is a branch in the version control system that contains all proposed changes and a set of
software tests.

137

https://github.com/microsoft/InnerEye-DeepLearning
https://github.com/microsoft/hi-ml

hi-ml

31.2.3 Finalization

At this point, the engineering owner of the proposed change has carried out all necessary changes in a branch of the
codebase. They will now initiate a Pull Request process that consists of the following steps:

• The code will be reviewed by at least 2 engineers. Both need to provide their explicit approval before the proposed
change can be integrated in the “main” branch.

• All unit and integration tests will start.

• All automatic code checks will start. These checks will verify the following:

– Consistency with static typing rules.

– Ensure that no passwords or other types of credentials are revealed.

– Ensure that none of the used third-party libraries contains high severity software vulnerabilities that could
affect the proposed functionality.

For code to be accepted into the “main” branch, the following criteria need to be satisfied:

• All unit and integration tests pass.

• The code has been reviewed by at least 2 engineers who are members of the core development team. This review
will also assess non-quantifiable aspects of the proposed change, such as clarity and readability of the code and
quality of the documentation.

• Any comments that have been added throughout the review process need to be resolved.

• All automated checks pass.

Once all the above criteria are satisfied, the branch will be merged into “main”.

31.3 Software Configuration Management

Third party libraries (sometimes called Software of Unknown Provenance, SOUP) are consumed via two package
management systems:

• Conda

• PyPi

Both of those package management systems maintain strict versioning: once a version of a package is published, it
cannot be modified in place. Rather, a new version needs to be released.

Our training and deployment code uses Conda environment files that specify an explicit version of a dependent package
to use (for example, lightning_bolts==0.4.0). The Conda environment files are also version controlled in GitHub.
Any change to a version of a third party library will need to be carried out via the same change management process
as a code change, with Pull Request, review, and all tests passing.

The list of third party software is maintained in GitHub in the Conda configuration file, that is environment.yml for
Linux environments and environment_win.yml for Windows environments. For example, this is the latest version
of the environment file for the InnerEye-DeepLearning repository.

138 Chapter 31. Software Development Process

https://github.com/microsoft/InnerEye-DeepLearning/blob/main/environment.yml
https://github.com/microsoft/InnerEye-DeepLearning/blob/main/environment.yml

hi-ml

31.4 Defect Handling

The handling of any bugs or defects discovered is done via GitHub Issues.

When an Issue is created, the team members will get notified. Open Issues are kept in a list sorted by priority. For
example, this is the list for all of the InnerEye-related Issues. Priorities are re-assesed regularly, at least once a week.

The Issue(s) with highest priority are assigned to an engineer. The engineer will then analyze the problem, and possibly
request more information to reproduce the problem. Requesting more information is also handled in the GitHub Issue.
Once the problem is clearly reproduced, the engineer will start to write a fix for the Issue as well as a test that ensures
that the fix does indeed solve the reported problem.

Writing the fix and test will follow the process outlined above in the Prototyping and Finalization sections. In particular,
the fix and test will undergo the Pull Request review process before they are merged into the main branch.

31.5 Updates to the Development Process

The development process described here is subject to change. Changes will undergo the review process described in
this very document, and will be published on GitHub upon completion.

31.4. Defect Handling 139

https://github.com/orgs/microsoft/projects/320

hi-ml

140 Chapter 31. Software Development Process

CHAPTER

THIRTYTWO

DEBUGGING AND PROFILING

While using the hi-ml toolbox modules, you might encounter some errors that require running the code step by step in
order to track down the source of these errors. Here are some guidelines to help you debug and/or profile hi-ml deep
learning training pipelines.

32.1 Debugging within VS Code

VS code has a great Debugging Support for many programming languages. Make sure to install and enable the Python
Extension for VS Code to debug hi-ml toolbox modules built in Python.

32.1.1 Debugging configs

The hi-ml repository is organised in Multi-root workspaces to account for environment differences among the modules
and offer flexibility to configure each module seperatly.

We provide a set of example debugging configs for each of hi-ml module:

• launch.json in hi-ml

• launch.json in hi-ml-azure

• launch.json in hi-ml-cpath

VS Code restricts debugging to user-written code only by default. If you want to step through external code and standard
libraries functions, set "justMyCode": false inside the debugging config block in the launch.json file.

In particular, if you would like to debug the current file while breaking through external libraries, navigate to
himl-projects.code-workspace in the repo root and edit the “launch” block as follows:

"launch": {
"configurations": [
{
"name": "Python: Current File",
"type": "python",
"request": "launch",
"program": "${file}",
"console": "integratedTerminal",
"justMyCode": false

},
],

}

141

https://code.visualstudio.com/docs/editor/debugging
https://marketplace.visualstudio.com/items?itemName=ms-python.python
https://marketplace.visualstudio.com/items?itemName=ms-python.python
https://code.visualstudio.com/docs/editor/workspaces#_multiroot-workspaces
https://github.com/microsoft/hi-ml/tree/main/hi-ml/.vscode/launch.json
https://github.com/microsoft/hi-ml/tree/main/hi-ml-azure/.vscode/launch.json
https://github.com/microsoft/hi-ml/tree/main/hi-ml-cpath/.vscode/launch.json

hi-ml

32.1.2 PyTorch Lightning flags for debugging and quick runs

The hi-ml toolbox is built upon PyTorch Lightning (PL) to help you build scalable deep learning models for healthcare
and life sciences. Refer to Running ML Experiments with hi-ml for detailed instructions on how to build scalable
pipelines within hi-ml.

Whether you’re building a brand new model, or extending an existing one, you might want to make sure that your code
runs as expected locally before submitting a job to AzureML. hi-ml supports a set of debugging flags that triggers
PyTorch Lightning Trainer arguments to help you detect any potential errors or bugs at early stage.

These are available as part of the TrainerParams and can be used as extra command line arguments with the hi-ml
runner.

• pl_fast_dev_run: If set to n, runs the pipeline for only n batch(es) of train, val and test for only a single epoch.
Additionally this flag disables all callbacks and hyperparameters serialization which makes the debugging process
very quick. This must be used for debugging purposes only.

• pl_limit_train_batches: Limits the training dataset to the given number of batches n.

• pl_limit_val_batches: Limits the validation dataset to the given number of batches n.

• pl_limit_train_batches: Limits the test dataset to the given number of batches n.

In general, it is very useful to run the following two steps as part of the developement cycle:

1. Make sure all training, validation and test loops complete properly by running the pipeline with a smaller batch
size and pl_fast_dev_run argument. Add the following to the hi-ml runner command line:

--bach-size=2 --pl-fast-dev-run=4

1. Make sure the whole pipeline runs properly end to end, including checkpoints callbacks and hyperparameter
serialization by running it with a smaller batch size once again while limiting train/val/test batches for few epochs.
Add the following arguments to the hi-ml runner command line:

--bach-size=2 --pl-limit-train-batches=4 --pl-limit-val-batches=4 --pl-limit-test-
→˓batches=4 --max_epochs=4

Note: Under the hood, setting pl-fast-dev-run=n overrides pl-limit-train-batches=n,
pl-limit-val-batches=n, pl-limit-train-batches=n, max_epochs=1 and disables all callbacks. Please keep
in mind that all the above is useful for efficient and quick debugging purposes only.

32.2 Profiling Machine Learning Pipelines

PyTorch Lightning supports a set of built-in profilers that help you identify bottlenecks in your code during training,
testing and inference. You can trigger code profiling through the command line argument --pl_profiler that you
can set to either simple, advanced, or pytorch.

The profiler outputs will be saved in a subfolder profiler inside the outputs folder of the run. Give it a try by adding
the following arguments to the hi-ml runner:

--max_epochs=4 --pl-profiler=pytorch

142 Chapter 32. Debugging and Profiling

https://www.pytorchlightning.ai/
https://pytorch-lightning.readthedocs.io/en/stable/common/trainer.html#trainer
https://github.com/microsoft/hi-ml/blob/96b8ba60ebf84416f5c9b13e2df15ee07a13e6bb/hi-ml/src/health_ml/deep_learning_config.py#L357
https://github.com/microsoft/hi-ml/blob/746c8b58c1af71f71eeaaac2a8584be1d9a5386f/hi-ml/src/health_ml/runner.py#L107
https://github.com/microsoft/hi-ml/blob/746c8b58c1af71f71eeaaac2a8584be1d9a5386f/hi-ml/src/health_ml/runner.py#L107
https://pytorch-lightning.readthedocs.io/en/stable/common/debugging.html#fast-dev-run
https://pytorch-lightning.readthedocs.io/en/stable/advanced/profiler.html
https://pytorch-lightning.readthedocs.io/en/stable/advanced/profiler.html#simple-profiler
https://pytorch-lightning.readthedocs.io/en/stable/advanced/profiler.html#simple-profiler
https://pytorch-lightning.readthedocs.io/en/stable/advanced/profiler.html#pytorch-profiler

hi-ml

32.2.1 Interpret PyTorch Profiling outputs via Tensorboard

PyTorch Profiler can effectively be interpreted via TensorBoard dashbord interface that is integrated in VS
Code as part of the Python extension. Once you have the outputs of the PyTorch Profiler in outputs/
YYYY-MM-DDTHHmmssZ_YourCustomContainer/pytorch_profiler, you can open the TensorBoard Profiler plu-
gin by launching the Command Palette using the keyboard shortcut CTRL + SHIFT + P (CMD + SHIFT + P on a Mac)
and typing the “Launch TensorBoard” command.

Next, you will be asked to select the path where the profiler traces are saved. Select another folder and navigate to
outputs/YYYY-MM-DDTHHmmssZ_YourCustomContainer/pytorch_profiler.

You can see Profiler plugin page as shown below. The overview shows a high-level summary of model performance.

You can change the view page in the left dropdown list.

32.2. Profiling Machine Learning Pipelines 143

https://pytorch.org/tutorials/recipes/recipes/profiler_recipe.html
https://code.visualstudio.com/docs/datascience/pytorch-support#_tensorboard-integration
https://code.visualstudio.com/docs/datascience/pytorch-support#_tensorboard-integration

hi-ml

The operator view displays the performance of every PyTorch operator that is executed either on the host or device.

144 Chapter 32. Debugging and Profiling

hi-ml

The GPU Kernel panel shows the GPU configuration, GPU usage and Tensor Cores usage. We can see below all
kernels’ time spent on GPU.

The trace view shows timeline of profiled operators and GPU kernels. You can select it to see details as below.

32.2. Profiling Machine Learning Pipelines 145

hi-ml

For more details on how to interpret and analyze these views, refer to the pytorch official documentation

32.2.2 Advanced profiling arguments

In some scenarios, you might be interested in profiling the memory usage by setting profile_memory=True or any
of these additional arguments. You can specify additional profiling arguments by overriding get_trainer_arguments in
your LightningContainer as shown below. Please make sure to specify your custom profiler under the profiler key
and properly set dirpath=self.outputs_folder/"profiler" so that the profiler’s outputs are saved in the right
output folder.

class YourCustomContainer(LightningContainer):

def __init__(custom_param: Any) -> None:
self.custom_param = custom_param

def get_trainer_arguments(self) -> Dict[str, Any]:
return {"profiler": PyTorchProfiler(dirpath=self.outputs_folder/"profiler", with_

→˓memory=True, with_stack=True)}

The profiler will record all memory allocation/release events and allocator’s internal state during profiling. The memory
view consists of three components as shown in the following.

146 Chapter 32. Debugging and Profiling

https://pytorch.org/tutorials/intermediate/tensorboard_profiler_tutorial.html#use-tensorboard-to-view-results-and-analyze-model-performance
https://pytorch.org/tutorials/intermediate/tensorboard_profiler_tutorial.html
https://github.com/microsoft/hi-ml/blob/e31236d709384a294bb71b096dcd9369afce4dba/hi-ml/src/health_ml/lightning_container.py#L70

hi-ml

Finally, the plugin also supports distributed view on profiling DDP with NCCL/GLOO as backend.

32.2. Profiling Machine Learning Pipelines 147

hi-ml

32.3 Learn More

• PyTorch Profiler with Tensorboard

• PyTorch TensorBoard Profiler github

• Torch profiler API

148 Chapter 32. Debugging and Profiling

https://pytorch.org/tutorials/intermediate/tensorboard_profiler_tutorial.html
https://github.com/pytorch/kineto/tree/main/tb_plugin
https://pytorch.org/docs/master/profiler.html

CHAPTER

THIRTYTHREE

LOADING IMAGES AS TORCH TENSORS

There are many libraries available that can load png images. Simple examples were made using most of them and time
of execution was compared. The goal was to load a png file, either RGB or greyscale, into a torch.Tensor.

The tensor specification was:

• shape [3, Height, Width] (for RGB images, in RGB order) or [1, Height, Width] (for greyscale images);

• dtype float32;

• scaled to between 0.0 and 1.0.

33.1 matplotlib

Two methods using matplotlib were compared. The first manipulates the numpy array from the image read before
creating the torch tensor, the second uses torchvision to do the transformation.

from pathlib import Path

import matplotlib.image as mpimg
import numpy as np
import torch
import torchvision.transforms.functional as TF

def read_image_matplotlib(input_filename: Path) -> torch.Tensor:
"""
Read an image file with matplotlib and return a torch.Tensor.

:param input_filename: Source image file path.
:return: torch.Tensor of shape (C, H, W).
"""
https://matplotlib.org/stable/api/_as_gen/matplotlib.pyplot.imread.html
numpy_array is a numpy.array of shape: (H, W), (H, W, 3), or (H, W, 4)
where H = height, W = width
numpy_array = mpimg.imread(input_filename)
if len(numpy_array.shape) == 2:

if loaded a greyscale image, then it is of shape (H, W) so add in an extra axis
numpy_array = np.expand_dims(numpy_array, 2)

transpose to shape (C, H, W)
numpy_array = np.transpose(numpy_array, (2, 0, 1))
torch_tensor = torch.from_numpy(numpy_array)
return torch_tensor

(continues on next page)

149

https://matplotlib.org/

hi-ml

(continued from previous page)

def read_image_matplotlib2(input_filename: Path) -> torch.Tensor:
"""
Read an image file with matplotlib and return a torch.Tensor.

:param input_filename: Source image file path.
:return: torch.Tensor of shape (C, H, W).
"""
https://matplotlib.org/stable/api/_as_gen/matplotlib.pyplot.imread.html
numpy_array is a numpy.array of shape: (H, W), (H, W, 3), or (H, W, 4)
where H = height, W = width
numpy_array = mpimg.imread(input_filename)
torch_tensor = TF.to_tensor(numpy_array)
return torch_tensor

33.2 OpenCV

Two methods using the Python interface to OpenCV were compared. The first manipulates the numpy array from the
image read before creating the torch tensor, the second uses torchvision to do the transformation. Note that OpenCV
loads images in BGR format, so they need to be transformed.

from pathlib import Path

import cv2
import numpy as np
import torch
import torchvision.transforms.functional as TF

def read_image_opencv(input_filename: Path) -> torch.Tensor:
"""
Read an image file with OpenCV and return a torch.Tensor.

:param input_filename: Source image file path.
:return: torch.Tensor of shape (C, H, W).
"""
https://docs.opencv.org/4.5.3/d4/da8/group__imgcodecs.html

→˓#ga288b8b3da0892bd651fce07b3bbd3a56
numpy_array is a numpy.ndarray, in BGR format.
numpy_array = cv2.imread(str(input_filename))
numpy_array = cv2.cvtColor(numpy_array, cv2.COLOR_BGR2RGB)
is_greyscale = False not in \

((numpy_array[:, :, 0] == numpy_array[:, :, 1]) == (numpy_array[:, :, 1] ==␣
→˓numpy_array[:, :, 2]))
if is_greyscale:

numpy_array = numpy_array[:, :, 0]
if len(numpy_array.shape) == 2:

if loaded a greyscale image, then it is of shape (H, W) so add in an extra axis
numpy_array = np.expand_dims(numpy_array, 2)

numpy_array = np.float32(numpy_array) / 255.0
(continues on next page)

150 Chapter 33. Loading Images as Torch Tensors

https://opencv.org/

hi-ml

(continued from previous page)

transpose to shape (C, H, W)
numpy_array = np.transpose(numpy_array, (2, 0, 1))
torch_tensor = torch.from_numpy(numpy_array)
return torch_tensor

def read_image_opencv2(input_filename: Path) -> torch.Tensor:
"""
Read an image file with OpenCV and return a torch.Tensor.

:param input_filename: Source image file path.
:return: torch.Tensor of shape (C, H, W).
"""
https://docs.opencv.org/4.5.3/d4/da8/group__imgcodecs.html

→˓#ga288b8b3da0892bd651fce07b3bbd3a56
numpy_array is a numpy.ndarray, in BGR format.
numpy_array = cv2.imread(str(input_filename))
numpy_array = cv2.cvtColor(numpy_array, cv2.COLOR_BGR2RGB)
is_greyscale = False not in \

((numpy_array[:, :, 0] == numpy_array[:, :, 1]) == (numpy_array[:, :, 1] ==␣
→˓numpy_array[:, :, 2]))
if is_greyscale:

numpy_array = numpy_array[:, :, 0]
torch_tensor = TF.to_tensor(numpy_array)
return torch_tensor

33.3 Pillow

Pillow is one of the easiest libraries to use because torchvision has a function to convert directly from Pillow images.

from pathlib import Path

from PIL import Image
import torch
import torchvision.transforms.functional as TF

def read_image_pillow(input_filename: Path) -> torch.Tensor:
"""
Read an image file with pillow and return a torch.Tensor.

:param input_filename: Source image file path.
:return: torch.Tensor of shape (C, H, W).
"""
pil_image = Image.open(input_filename)
torch_tensor = TF.to_tensor(pil_image)
return torch_tensor

33.3. Pillow 151

https://python-pillow.org/

hi-ml

33.4 SciPy

SciPy is also easy to use because it loads images into a numpy array of the expected shape so that it can easily be
transformed into a torch tensor.

from pathlib import Path

import imageio
import torch
import torchvision.transforms.functional as TF

def read_image_scipy(input_filename: Path) -> torch.Tensor:
"""
Read an image file with scipy and return a torch.Tensor.

:param input_filename: Source image file path.
:return: torch.Tensor of shape (C, H, W).
"""
numpy_array = imageio.imread(input_filename)
torch_tensor = TF.to_tensor(numpy_array)
return torch_tensor

33.5 SimpleITK

SimpleITK requires a two step process to load an image and extract the data as a numpy array, but it is then in the
correct format.

from pathlib import Path

import SimpleITK as sitk
import torch
import torchvision.transforms.functional as TF

def read_image_sitk(input_filename: Path) -> torch.Tensor:
"""
Read an image file with SimpleITK and return a torch.Tensor.

:param input_filename: Source image file path.
:return: torch.Tensor of shape (C, H, W).
"""
itk_image = sitk.ReadImage(str(input_filename))
numpy_array = sitk.GetArrayFromImage(itk_image)
torch_tensor = TF.to_tensor(numpy_array)
return torch_tensor

152 Chapter 33. Loading Images as Torch Tensors

https://scipy.org/
https://simpleitk.org/

hi-ml

33.6 scikit-image

scikit-image is also very simple to use, since it loads the image as a numpy array in the correct format.

from pathlib import Path

from skimage import io
import torch
import torchvision.transforms.functional as TF

def read_image_skimage(input_filename: Path) -> torch.Tensor:
"""
Read an image file with scikit-image and return a torch.Tensor.

:param input_filename: Source image file path.
:return: torch.Tensor of shape (C, H, W).
"""
numpy_array = io.imread(input_filename)
torch_tensor = TF.to_tensor(numpy_array)
return torch_tensor

33.7 numpy

For comparison, the png image data was saved in the numpy native data format and then reloaded.

from pathlib import Path

import numpy as np
import torch
import torchvision.transforms.functional as TF

def read_image_numpy(input_filename: Path) -> torch.Tensor:
"""
Read an Numpy file with Torch and return a torch.Tensor.

:param input_filename: Source image file path.
:return: torch.Tensor of shape (C, H, W).
"""
numpy_array = np.load(input_filename)
torch_tensor = torch.from_numpy(numpy_array)
return torch_tensor

33.6. scikit-image 153

https://scikit-image.org/

hi-ml

33.8 torch

Again, for comparison, the png image data was saved in the torch tensor native data format and then reloaded.

from pathlib import Path

import torch

def read_image_torch2(input_filename: Path) -> torch.Tensor:
"""
Read a Torch file with Torch and return a torch.Tensor.

:param input_filename: Source image file path.
:return: torch.Tensor of shape (C, H, W).
"""
torch_tensor = torch.load(input_filename)
return torch_tensor

33.9 Results

All the above methods were ran against 122 small test images, repeated 10 times. So in total there were 1220 calls to
each of the functions.

33.9.1 RGB Images

For 61 RGB images of size 224 x 224 pixels and 61 of size 180 x 224 pixels, repeated 10 times, there are the following
timings:

Function Total time (s)
read_image_matplotlib 9.81336
read_image_matplotlib2 9.96016
read_image_opencv 12.4301
read_image_opencv2 12.6227
read_image_pillow 16.2288
read_image_scipy 17.9958
read_image_sitk 63.6669
read_image_skimage 18.273
read_image_numpy 7.29741
read_image_torch2 7.07304

154 Chapter 33. Loading Images as Torch Tensors

hi-ml

33.9.2 Greyscale Images

Similarly, with greyscale versions of the RGB images:

Function Total time (s)
read_image_matplotlib 8.32523
read_image_matplotlib2 8.26399
read_image_opencv 11.6838
read_image_opencv2 11.7935
read_image_pillow 15.7406
read_image_scipy 17.9061
read_image_sitk 71.8732
read_image_skimage 18.0698
read_image_numpy 7.94197
read_image_torch2 7.73153

The recommendation therefore is to use matplotlib mpimg.imread to load the image and TF.to_tensor to transform
the numpy array to a torch tensor. This is almost as fast as loading the data directly in a native numpy or torch format.

33.10 Loading Images as Numpy Arrays

Alternatively, a numpy array may be required with an equivalent form to PIL:

• shape [Height, Width, 3] (for RGB images), in RGB order or [Height, Width] (for greyscale images);

• dtype float;

• range between 0.0 and 255.0.

33.10.1 Pillow

If the image is known to be a png then a shortcut can be taken, which is quicker:

from pathlib import Path

import numpy as np
from PIL import PngImagePlugin
from PIL import Image

def read_image_pillow2(input_filename: Path) -> np.array: # type: ignore
"""
Read an image file with pillow and return a numpy array.

:param input_filename: Source image file path.
:return: numpy array of shape (H, W), (H, W, 3).
"""
with Image.open(input_filename) as pil_png:

return np.asarray(pil_png, np.float)

(continues on next page)

33.10. Loading Images as Numpy Arrays 155

hi-ml

(continued from previous page)

def read_image_pillow3(input_filename: Path) -> np.array: # type: ignore
"""
Read an image file with pillow and return a numpy array.

:param input_filename: Source image file path.
:return: numpy array of shape (H, W), (H, W, 3).
"""
with PngImagePlugin.PngImageFile(input_filename) as pil_png:

return np.asarray(pil_png, np.float)

33.10.2 SciPy

Similarly, using SciPy:

from pathlib import Path

import imageio
import numpy as np

def read_image_scipy2(input_filename: Path) -> np.array: # type: ignore
"""
Read an image file with scipy and return a numpy array.

:param input_filename: Source image file path.
:return: numpy array of shape (H, W), (H, W, 3).
"""
numpy_array = imageio.imread(input_filename).astype(np.float)
return numpy_array

33.11 Results

The three above methods were tested against the same images as above.

33.11.1 RGB Images

For 61 RGB images of size 224 x 224 pixels and 61 of size 180 x 224 pixels, repeated 10 times, there are the following
timings:

Function Total time (s)
read_image_pillow2 44.8641
read_image_pillow3 18.1665
read_image_scipy2 51.8801

156 Chapter 33. Loading Images as Torch Tensors

hi-ml

33.11.2 Greyscale Images

Similarly, with greyscale versions of the RGB images:

Function Total time (s)
read_image_pillow2 38.3468
read_image_pillow3 14.664
read_image_scipy2 39.6123

33.11. Results 157

hi-ml

158 Chapter 33. Loading Images as Torch Tensors

CHAPTER

THIRTYFOUR

WHOLE SLIDE IMAGES

Computational Pathology works with image files that can be very large in size, up to many GB. These files may be
too large to load entirely into memory at once, or at least too large to act as training data. Instead they may be split
into multiple tiles of a much smaller size, e.g. 224x224 pixels before being used for training. There are two popular
libraries used for handling this type of image:

• OpenSlide

• cuCIM

but they both come with trade offs and complications.

In development there is also tifffile, but this is untested.

34.1 OpenSlide

There is a Python interface for OpenSlide at openslide-python, but this first requires the installation of the OpenSlide
library itself. This can be done on Ubuntu with:

apt-get install openslide-tools

On Windows follow the instructions here and make sure that the install directory is added to the system path.

Once the shared library/dlls are installed, install the Python interface with:

pip install openslide-python

34.2 cuCIM

cuCIM is much easier to install, it can be done entirely with the Python package: cucim. However, there are the
following caveats:

• It requires a GPU, with NVIDIA driver 450.36+

• It requires CUDA 11.0+

• It supports only a subset of tiff image files.

The suitable AzureML base Docker images are therefore the ones containing cuda11, and the compute instance must
contain a GPU.

159

https://openslide.org/
https://github.com/rapidsai/cucim
https://github.com/cgohlke/tifffile/
https://pypi.org/project/openslide-python/
https://openslide.org/docs/windows/
https://pypi.org/project/cucim/

hi-ml

34.3 Performance

An exploratory set of scripts for comparing loading images with OpenSlide or cuCIM, and performing tiling using both
libraries can be found at slide_image_loading.

34.3.1 Loading and saving at lowest resolution

Four test tiff files are used:

• a 44.5 MB file with level dimensions: ((27648, 29440), (6912, 7360), (1728, 1840))

• a 19.9 MB file with level dimensions: ((5888, 25344), (1472, 6336), (368, 1584))

• a 5.5 MB file with level dimensions: ((27648, 29440), (6912, 7360), (1728, 1840)), but acting as a mask

• a 2.1 MB file with level dimensions: ((5888, 25344), (1472, 6336), (368, 1584)), but acting as a mask

For OpenSlide the following code:

with OpenSlide(str(input_file)) as img:
count = img.level_count
dimensions = img.level_dimensions

print(f"level_count: {count}")
print(f"dimensions: {dimensions}")

for k, v in img.properties.items():
print(k, v)

region = img.read_region(location=(0, 0),
level=count-1,
size=dimensions[count-1])

region.save(output_file)

took an average of 29ms to open the file, 88ms to read the region, and 243ms to save the region as a png.

For cuCIM the following code:

img = cucim.CuImage(str(input_file))

count = img.resolutions['level_count']
dimensions = img.resolutions['level_dimensions']

print(f"level_count: {count}")
print(f"level_dimensions: {dimensions}")

print(img.metadata)

region = img.read_region(location=(0, 0),
size=dimensions[count-1],
level=count-1)

np_img_arr = np.asarray(region)
img2 = Image.fromarray(np_img_arr)
img2.save(output_file)

160 Chapter 34. Whole Slide Images

https://github.com/microsoft/hi-ml/tree/main/hi-ml-cpath/other/slide_image_loading

hi-ml

took an average of 369ms to open the file, 7ms to read the region and 197ms to save the region as a png, but note that
it failed to handle the mask images.

34.3.2 Loading and saving as tiles at the medium resolution

Test code created tiles of size 224x224 pilfes, loaded the mask images, and used occupancy levels to decide which tiles
to create and save from level 1 - the middle resolution. This was profiled against both images, as above.

For cuCIM the total time was 4.7s, 2.48s to retain the tiles as a Numpy stack but not save them as pngs. cuCIM has the
option of cacheing images, but is actually made performance slightly worse, possibly because the natural tile sizes in
the original tiffs were larger than the tile sizes.

For OpenSlide the comparable total times were 5.7s, and 3.26s.

34.3. Performance 161

hi-ml

162 Chapter 34. Whole Slide Images

CHAPTER

THIRTYFIVE

CHANGELOG

Early versions of this toolbox used a manually created changelog. As of March 2022, we have switched to using
Github’s auto-generated changelog. If you would like to view the changelog for a particular release, you can do so on
the Releases page: Each release contains a link for “Full Changelog”

35.1 Changelog for Versions before March 2022

35.2 0.1.14

35.2.1 Added

• (#227) Add TransformerPooling.

• (#179) Add GaussianBlur and RotationByMultiplesOf90 augmentations. Added torchvision and opencv to the
environment file since it is necessary for the augmentations.

• (#193) Add transformation adaptor to hi-ml-histopathology.

• (#178) Add runner script for running ML experiments.

• (#181) Add computational pathology tools in hi-ml-histopathology folder.

• (#187) Add mean pooling layer for MIL.

• (#186) Add inference to hi-ml runner.

• (#198) Add cross-validation to hi-ml runner.

• (#198) Improved editor setup for VSCode.

35.2.2 Changed

• (#227) Pooling constructor is outside of DeepMIL and inside of BaseMIL now.

• (#198) Model config loader is now more flexible, can accept fully qualified class name or just top-level module
name and class (like histopathology.DeepSMILECrck)

• (#198) Runner raises an error when Conda environment file contains a pip include (-r) statement

• (#196) Show current workspace name in error message.

163

https://github.com/microsoft/hi-ml/releases
https://github.com/microsoft/hi-ml/pull/227
https://github.com/microsoft/hi-ml/pull/179
https://github.com/microsoft/hi-ml/pull/193
https://github.com/microsoft/hi-ml/pull/178
https://github.com/microsoft/hi-ml/pull/181
https://github.com/microsoft/hi-ml/pull/187
https://github.com/microsoft/hi-ml/pull/186
https://github.com/microsoft/hi-ml/pull/198
https://github.com/microsoft/hi-ml/pull/198
https://github.com/microsoft/hi-ml/pull/227
https://github.com/microsoft/hi-ml/pull/198
https://github.com/microsoft/hi-ml/pull/198
https://github.com/microsoft/hi-ml/pull/196

hi-ml

35.2.3 Fixed

• ([#267]https://github.com/microsoft/hi-ml/pull/267)) Correct PYTHONPATH for Windows in VS Code settings

• ([#266]https://github.com/microsoft/hi-ml/pull/266)) Pin jinja2 package to avoid ‘No attribute Markup’ bug in
version 3.1.0

• (#246) Added tolerance to test_attentionlayers.py.

• (#198) Dependencies for histopathology folder are no longer specified in test_requirements.txt, but cor-
rectly in the histopathology Conda environment.

• (#188) Updated DeepSMILES models. Now they are uptodate with innereye-dl.

• (#179) HEDJitter was jittering the D channel as well. StainNormalization was relying on skimage.

• (#195) Fix DeepMIL metrics bug whereby hard labels were used instead of probabilities.

35.2.4 Removed

35.2.5 Deprecated

35.3 0.1.13

35.3.1 Added

• (#170) Add utils including bag sampling, bounding boxes, HEDJitter, StainNormalisation and add attention layers

35.3.2 Changed

• (#173) Improve report tool: allow lists of tables, option for zipping report folder, option for base64 encoding
images

35.3.3 Fixed

• (#169) Fix a test that was failing occasionally

35.3.4 Removed

35.3.5 Deprecated

35.4 0.1.12

35.4.1 Added

• (#159) Add profiling for loading png image files as numpy arrays.

• (#152) Add a custom HTML reporting tool

• (#167) Ability to log to an AzureML run when outside of AzureML

164 Chapter 35. Changelog

https://github.com/microsoft/hi-ml/pull/246
https://github.com/microsoft/hi-ml/pull/198
https://github.com/microsoft/hi-ml/pull/188
https://github.com/microsoft/hi-ml/pull/179
https://github.com/microsoft/hi-ml/pull/195
https://github.com/microsoft/hi-ml/pull/170
https://github.com/microsoft/hi-ml/pull/173
https://github.com/microsoft/hi-ml/pull/169
https://github.com/microsoft/hi-ml/pull/159
https://github.com/microsoft/hi-ml/pull/152
https://github.com/microsoft/hi-ml/pull/167

hi-ml

35.4.2 Changed

• (164) Look in more locations for std out from AzureML run.

• (#167) The AzureMLLogger has one mandatory argument now, that controls whether it should log to AzureML
also when running on a VM.

35.4.3 Fixed

• (#161) Empty string as target folder for a dataset creates an invalid mounting path for the dataset in AzureML
(fixes #160)

• (#167) Fix bugs in logging hyperparameters: logging as name/value table, rather than one column per hyperpa-
rameter. Use string logging for all hyperparameters

• (#174) Fix bugs in returned local_checkpoint_path when downloading checkpoints from AML run

35.4.4 Removed

35.4.5 Deprecated

35.5 0.1.11

35.5.1 Added

• (#145) Add ability to mount datasets when running locally.

• (#149) Add a k-fold cross validation wrapper around HyperDrive

• (#132) Profile methods for loading png image files.

35.5.2 Changed

35.5.3 Fixed

• (#156 AzureML Runs should use registered environment after retrieval)

35.5.4 Removed

35.5.5 Deprecated

35.6 0.1.10

35.6.1 Added

• (#142) Adding AzureML progress bar and diagnostics for batch loading

• (#138) Guidelines and profiling for whole slide images.

35.5. 0.1.11 165

https://github.com/microsoft/hi-ml/pull/164
https://github.com/microsoft/hi-ml/pull/167
https://github.com/microsoft/hi-ml/pull/161
https://github.com/microsoft/hi-ml/pull/167
https://github.com/microsoft/hi-ml/pull/174
https://github.com/microsoft/hi-ml/pull/145
https://github.com/microsoft/hi-ml/pull/149
https://github.com/microsoft/hi-ml/pull/132
https://github.com/microsoft/hi-ml/pull/156
https://github.com/microsoft/hi-ml/pull/142
https://github.com/microsoft/hi-ml/pull/138

hi-ml

35.6.2 Changed

• ([#129])https://github.com/microsoft/hi-ml/pull/129)) Refactor command line tools’ arguments. Refactor
health_azure.utils’ various get_run functions. Replace argparsing with parametrized classes.

35.6.3 Fixed

35.6.4 Removed

35.6.5 Deprecated

35.7 0.1.9 (2021-10-20)

35.7.1 Added

• (#133) PyTorch Lightning logger for AzureML. Helper functions for consistent logging

• (#136) Documentation for using low priority nodes

35.7.2 Changed

• (#133) Made large breaking changes to module names, from health.azure to health_azure.

• ([#141])(https://github.com/microsoft/hi-ml/pull/141)) Update changelog for release and increase scope of
test_register_environment to ensure that by default environments are registered with a version number

35.7.3 Fixed

• (#134) Fixed repo references and added pyright to enforce global checking

• (#139 Fix register_environment, which was ignoring existing environemnts previously. Also ensure that the
environment is given version 1 by default instead of “autosave”)

35.8 0.1.8 (2021-10-06)

35.8.1 Added

• (#123) Add helper function to download checkpoint files

• (#128) When downloading files in a distributed PyTorch job, a barrier is used to synchronize the processes.

166 Chapter 35. Changelog

https://github.com/microsoft/hi-ml/pull/129
https://github.com/microsoft/hi-ml/pull/133
https://github.com/microsoft/hi-ml/pull/136
https://github.com/microsoft/hi-ml/pull/133
https://github.com/microsoft/hi-ml/pull/134
https://github.com/microsoft/hi-ml/pull/139
https://github.com/microsoft/hi-ml/pull/123
https://github.com/microsoft/hi-ml/pull/128

hi-ml

35.8.2 Changed

• (#127) The field is_running_in_azure of AzureRunInfo has been renamed to is_running_in_azure_ml

35.8.3 Fixed

• (#127) Fixing bug #126: get_workspace was assuming it runs in AzureML, when it was running on a plain Azure
build agent.

35.9 0.1.7 (2021-10-04)

35.9.1 Added

• (#111) Adding changelog. Displaying changelog in sphinx docu. Ensure changelog is updated.

35.9.2 Changed

• (#112) Update himl_tensorboard to work with files not in ‘logs’ directory

• (#106) Split into two packages. Most of existing package renamed to hi-ml-azure, remained remains hi-ml.

• (#113) Add helper function to download files from AML Run, tidied up some command line args, and moved
some functions from himl.py to azure_util.py

• (#122) Add helper functions to upload to and download from AML Datastores

35.9.3 Fixed

• (#117) Bug fix: Config.json file was expected to be present, even if workspace was provided explicitly.

• (#119) Bug fix: Code coverage wasn’t formatted correctly.

35.10 0.1.4 (2021-09-15)

• This is the baseline release.

35.9. 0.1.7 (2021-10-04) 167

https://github.com/microsoft/hi-ml/pull/127
https://github.com/microsoft/hi-ml/pull/127
https://github.com/microsoft/hi-ml/pull/111
https://github.com/microsoft/hi-ml/pull/112
https://github.com/microsoft/hi-ml/pull/106
https://github.com/microsoft/hi-ml/pull/113
https://github.com/microsoft/hi-ml/pull/122
https://github.com/microsoft/hi-ml/pull/117
https://github.com/microsoft/hi-ml/pull/119

hi-ml

168 Chapter 35. Changelog

CHAPTER

THIRTYSIX

HEALTH_AZURE PACKAGE

class health_azure.AzureRunInfo(input_datasets, output_datasets, mount_contexts, run,
is_running_in_azure_ml, output_folder, logs_folder)

This class stores all information that a script needs to run inside and outside of AzureML. It is return from
submit_to_azure_if_needed, where the return value depends on whether the script is inside or outside AzureML.

Please check the source code for detailed documentation for all fields.

input_datasets: List[Optional[pathlib.Path]]
A list of folders that contain all the datasets that the script uses as inputs. Input datasets must be specified
when calling submit_to_azure_if_needed. Here, they are made available as Path objects. If no input datasets
are specified, the list is empty.

is_running_in_azure_ml: bool
If True, the present script is executing inside AzureML. If False, outside AzureML.

logs_folder: Optional[pathlib.Path]
The folder into which all log files (for example, tensorboard) should be written. All files written to this
folder will be uploaded to blob storage regularly during the script run.

mount_contexts: List[azureml.dataprep.fuse.daemon.MountContext]
A list of mount contexts for input datasets when running outside AzureML. There will be a mount context
for each input dataset where there is no local_folder, there is a workspace, and use_mounting is set. This
list is maintained only to prevent exit from these contexts until the RunInfo object is deleted.

output_datasets: List[Optional[pathlib.Path]]
A list of folders that contain all the datasets that the script uses as outputs. Output datasets must be specified
when calling submit_to_azure_if_needed. Here, they are made available as Path objects. If no output
datasets are specified, the list is empty.

output_folder: Optional[pathlib.Path]
The output folder into which all script outputs should be written, if they should be later available in the
AzureML portal. Files written to this folder will be uploaded to blob storage at the end of the script run.

run: Optional[azureml.core.run.Run]
An AzureML Run object if the present script is executing inside AzureML, or None if outside of AzureML.
The Run object has methods to log metrics, upload files, etc.

class health_azure.DatasetConfig(name, datastore='', overwrite_existing=True, version=None,
use_mounting=None, target_folder=None, local_folder=None)

Contains information to use AzureML datasets as inputs or outputs.

Parameters
• name (str) – The name of the dataset, as it was registered in the AzureML workspace. For

output datasets, this will be the name given to the newly created dataset.

169

hi-ml

• datastore (str) – The name of the AzureML datastore that holds the dataset. This can
be empty if the AzureML workspace has only a single datastore, or if the default datastore
should be used.

• overwrite_existing (bool) – Only applies to uploading datasets. If True, the dataset will
be overwritten if it already exists. If False, the dataset creation will fail if the dataset already
exists.

• version (Optional[int]) – The version of the dataset that should be used. This is only
used for input datasets. If the version is not specified, the latest version will be used.

• use_mounting (Optional[bool]) – If True, the dataset will be “mounted”, that is, indi-
vidual files will be read or written on-demand over the network. If False, the dataset will
be fully downloaded before the job starts, respectively fully uploaded at job end for output
datasets. Defaults: False (downloading) for datasets that are script inputs, True (mounting)
for datasets that are script outputs.

• target_folder (Union[Path, str, None]) – The folder into which the dataset should be
downloaded or mounted. If left empty, a random folder on /tmp will be chosen. Do NOT
use “.” as the target_folder.

• local_folder (Union[Path, str, None]) – The folder on the local machine at which the
dataset is available. This is used only for runs outside of AzureML. If this is empty then the
target_folder will be used to mount or download the dataset.

to_input_dataset(dataset_index, workspace, strictly_aml_v1, ml_client=None)
Creates a configuration for using an AzureML dataset inside of an AzureML run. This will make the
AzureML dataset with given name available as a named input, using INPUT_0 as the key for dataset index
0.

Parameters
• workspace (Workspace) – The AzureML workspace to read from.

• dataset_index (int) – Suffix for using datasets as named inputs, the dataset will be
marked INPUT_{index}

• strictly_aml_v1 (bool) – If True, use Azure ML SDK v1. Otherwise, attempt to use
Azure ML SDK v2.

• ml_client (Optional[MLClient]) – An Azure MLClient object for interacting with
Azure resources.

Return type Optional[DatasetConsumptionConfig]

to_input_dataset_local(workspace)
Return a local path to the dataset when outside of an AzureML run. If local_folder is supplied, then this
is assumed to be a local dataset, and this is returned. Otherwise the dataset is mounted or downloaded to
either the target folder or a temporary folder and that is returned. If self.name refers to a v2 dataset, it is
not possible to mount the data here, therefore a tuple of Nones will be returned.

Parameters workspace (Workspace) – The AzureML workspace to read from.

Return type Tuple[Path, Optional[MountContext]]

Returns Tuple of (path to dataset, optional mountcontext)

to_output_dataset(workspace, dataset_index)
Creates a configuration to write a script output to an AzureML dataset. The name and datastore of this new
dataset will be taken from the present object.

Parameters

170 Chapter 36. health_azure Package

hi-ml

• workspace (Workspace) – The AzureML workspace to read from.

• dataset_index (int) – Suffix for using datasets as named inputs, the dataset will be
marked OUTPUT_{index}

Return type OutputFileDatasetConfig

Returns An AzureML OutputFileDatasetConfig object, representing the output dataset.

health_azure.aggregate_hyperdrive_metrics(child_run_arg_name, run_id=None, run=None,
keep_metrics=None, aml_workspace=None,
workspace_config_path=None)

For a given HyperDriveRun object, or id of a HyperDriveRun, retrieves the metrics from each of its children
and then aggregates it. Optionally filters the metrics logged in the Run, by providing a list of metrics to keep.
Returns a DataFrame where each column is one child run, and each row is a metric logged by that child run. For
example, for a HyperDrive run with 2 children, where each logs epoch, accuracy and loss, the result would look
like:

	0	1
epoch	[1, 2, 3]	[1, 2, 3]
accuracy	[0.7, 0.8, 0.9]	[0.71, 0.82, 0.91]
loss	[0.5, 0.4, 0.3]	[0.45, 0.37, 0.29]

here each column is one of the splits/ child runs, and each row is one of the metrics you have logged to the run.

It is possible to log rows and tables in Azure ML by calling run.log_table and run.log_row respectively. In this
case, the DataFrame will contain a Dictionary entry instead of a list, where the keys are the table columns (or
keywords provided to log_row), and the values are the table values. E.g.:

| | 0 | 1 ␣
→˓ |
|----------------|--|-----------------------
→˓--------------------|
| accuracy_table |{'epoch': [1, 2], 'accuracy': [0.7, 0.8]} | {'epoch': [1, 2],
→˓'accuracy': [0.8, 0.9]} |

It is also possible to log plots in Azure ML by calling run.log_image and passing in a matplotlib plot. In this
case, the DataFrame will contain a string representing the path to the artifact that is generated by AML (the saved
plot in the Logs & Outputs pane of your run on the AML portal). E.g.:

| | 0 | 1 ␣
→˓ |
|----------------|---|------------------------
→˓---------------|
| accuracy_plot | aml://artifactId/ExperimentRun/dcid.... | aml://artifactId/
→˓ExperimentRun/dcid...|

Parameters
• child_run_arg_name (str) – the name of the argument given to each child run to denote

its position relative to other child runs (e.g. this arg could equal ‘child_run_index’ - then
each of your child runs should expect to receive the arg ‘–child_run_index’ with a value <=
the total number of child runs)

• run (Optional[Run]) – An Azure ML HyperDriveRun object to aggregate the metrics from.
Either this or run_id must be provided

171

hi-ml

• run_id (Optional[str]) – The id (type: str) of a parent/ HyperDrive run. Either this or
run must be provided.

• keep_metrics (Optional[List[str]]) – An optional list of metric names to filter the re-
turned metrics by

• aml_workspace (Optional[Workspace]) – If run_id is provided, this is an optional AML
Workspace object to retrieve the Run from

• workspace_config_path (Optional[Path]) – If run_id is provided, this is an optional
path to a config containing details of the AML Workspace object to retrieve the Run from.

Return type DataFrame

Returns A Pandas DataFrame containing the aggregated metrics from each child run

health_azure.create_aml_run_object(experiment_name, run_name=None, workspace=None,
workspace_config_path=None, snapshot_directory=None)

Creates an AzureML Run object in the given workspace, or in the workspace given by the AzureML config
file. This Run object can be used to write metrics to AzureML, upload files, etc, when the code is not running
in AzureML. After finishing all operations, use run.flush() to write metrics to the cloud, and run.complete() or
run.fail().

Example: >>>run = create_aml_run_object(experiment_name=”run_on_my_vm”, run_name=”try1”)
>>>run.log(“foo”, 1.23) >>>run.flush() >>>run.complete()

Parameters
• experiment_name (str) – The AzureML experiment that should hold the run that will be

created.

• run_name (Optional[str]) – An optional name for the run (this will be used as the display
name in the AzureML UI)

• workspace (Optional[Workspace]) – If provided, use this workspace to create the run in.
If not provided, use the workspace specified by the config.json file in the folder or its parent
folder(s).

• workspace_config_path (Optional[Path]) – If not provided with an AzureML
workspace, then load one given the information in this config file.

• snapshot_directory (Union[Path, str, None]) – The folder that should be included as
the code snapshot. By default, no snapshot is created (snapshot_directory=None or snap-
shot_directory=””). Set this to the folder that contains all the code your experiment uses.
You can use a file .amlignore to skip specific files or folders, akin to .gitignore

Return type Run

Returns An AzureML Run object.

health_azure.create_crossval_hyperdrive_config(num_splits,
cross_val_index_arg_name='crossval_index',
metric_name='val/loss')

Creates an Azure ML HyperDriveConfig object for running cross validation. Note: this config expects a metric
named <metric_name> to be logged in your training script([see here](https://docs.microsoft.com/en-us/azure/
machine-learning/how-to-tune-hyperparameters#log-metrics-for-hyperparameter-tuning))

Parameters
• num_splits (int) – The number of splits for k-fold cross validation

• cross_val_index_arg_name (str) – The name of the commandline argument that each
of the child runs gets, to indicate which split they should work on.

172 Chapter 36. health_azure Package

https://docs.microsoft.com/en-us/azure/machine-learning/how-to-tune-hyperparameters#log-metrics-for-hyperparameter-tuning
https://docs.microsoft.com/en-us/azure/machine-learning/how-to-tune-hyperparameters#log-metrics-for-hyperparameter-tuning

hi-ml

• metric_name (str) – The name of the metric that the HyperDriveConfig will compare runs
by. Please note that it is your responsibility to make sure a metric with this name is logged
to the Run in your training script

Return type HyperDriveConfig

Returns an Azure ML HyperDriveConfig object

health_azure.create_run_configuration(workspace, compute_cluster_name,
conda_environment_file=None, aml_environment_name='',
environment_variables=None, pip_extra_index_url='',
private_pip_wheel_path=None, docker_base_image='',
docker_shm_size='', num_nodes=1, max_run_duration='',
input_datasets=None, output_datasets=None)

Creates an AzureML run configuration, that contains information about environment, multi node execution, and
Docker.

Parameters
• workspace (Workspace) – The AzureML Workspace to use.

• aml_environment_name (str) – The name of an AzureML environment that should
be used to submit the script. If not provided, an environment will be created from
the arguments to this function (conda_environment_file, pip_extra_index_url, environ-
ment_variables, docker_base_image)

• max_run_duration (str) – The maximum runtime that is allowed for this job in AzureML.
This is given as a floating point number with a string suffix s, m, h, d for seconds, minutes,
hours, day. Examples: ‘3.5h’, ‘2d’

• compute_cluster_name (str) – The name of the AzureML cluster that should run the job.
This can be a cluster with CPU or GPU machines.

• conda_environment_file (Optional[Path]) – The conda configuration file that de-
scribes which packages are necessary for your script to run.

• environment_variables (Optional[Dict[str, str]]) – The environment variables that
should be set when running in AzureML.

• docker_base_image (str) – The Docker base image that should be used when creating a
new Docker image.

• docker_shm_size (str) – The Docker shared memory size that should be used when cre-
ating a new Docker image.

• pip_extra_index_url (str) – If provided, use this PIP package index to find additional
packages when building the Docker image.

• private_pip_wheel_path (Optional[Path]) – If provided, add this wheel as a private
package to the AzureML workspace.

• conda_environment_file – The file that contains the Conda environment definition.

• input_datasets (Optional[List[DatasetConfig]]) – The script will consume all data
in folder in blob storage as the input. The folder must exist in blob storage, in the location
that you gave when creating the datastore. Once the script has run, it will also register the
data in this folder as an AzureML dataset.

• output_datasets (Optional[List[DatasetConfig]]) – The script will create a tempo-
rary folder when running in AzureML, and while the job writes data to that folder, upload it
to blob storage, in the data store.

• num_nodes (int) – The number of nodes to use in distributed training on AzureML.

173

hi-ml

Return type RunConfiguration

Returns
health_azure.create_script_run(script_params, snapshot_root_directory=None, entry_script=None)

Creates an AzureML ScriptRunConfig object, that holds the information about the snapshot, the entry script, and
its arguments.

Parameters
• script_params (List[str]) – A list of parameter to pass on to the script as it

runs in AzureML. Required arg. Script parameters can be generated using the
_get_script_params() function.

• snapshot_root_directory (Optional[Path]) – The directory that contains all code that
should be packaged and sent to AzureML. All Python code that the script uses must be copied
over.

• entry_script (Union[Path, str, None]) – The script that should be run in AzureML. If
None, the current main Python file will be executed.

Return type ScriptRunConfig

Returns
health_azure.download_checkpoints_from_run_id(run_id, checkpoint_path_or_folder, output_folder,

aml_workspace=None, workspace_config_path=None)
Given an Azure ML run id, download all files from a given checkpoint directory within that run, to the path spec-
ified by output_path. If running in AML, will take the current workspace. Otherwise, if neither aml_workspace
nor workspace_config_path are provided, will try to locate a config.json file in any of the parent folders of the
current working directory.

Parameters
• run_id (str) – The id of the run to download checkpoints from

• checkpoint_path_or_folder (str) – The path to the either a single checkpoint file, or a
directory of checkpoints within the run files. If a folder is provided, all files within it will be
downloaded.

• output_folder (Path) – The path to which the checkpoints should be stored

• aml_workspace (Optional[Workspace]) – Optional AML workspace object

• workspace_config_path (Optional[Path]) – Optional workspace config file

Return type None

health_azure.download_files_from_run_id(run_id, output_folder, prefix='', workspace=None,
workspace_config_path=None, validate_checksum=False)

For a given Azure ML run id, first retrieve the Run, and then download all files, which optionally start with a
given prefix. E.g. if the Run creates a folder called “outputs”, which you wish to download all files from, specify
prefix=”outputs”. To download all files associated with the run, leave prefix empty.

If not running inside AML and neither a workspace nor the config file are provided, the code will try to locate
a config.json file in any of the parent folders of the current working directory. If that succeeds, that config.json
file will be used to instantiate the workspace.

If function is called in a distributed PyTorch training script, the files will only be downloaded once per node (i.e,
all process where is_local_rank_zero() == True). All processes will exit this function once all downloads are
completed.

Parameters

174 Chapter 36. health_azure Package

hi-ml

• run_id (str) – The id of the Azure ML Run

• output_folder (Path) – Local directory to which the Run files should be downloaded.

• prefix (str) – Optional prefix to filter Run files by

• workspace (Optional[Workspace]) – Optional Azure ML Workspace object

• workspace_config_path (Optional[Path]) – Optional path to settings for Azure ML
Workspace

• validate_checksum (bool) – Whether to validate the content from HTTP response

Return type None

health_azure.download_from_datastore(datastore_name, file_prefix, output_folder, aml_workspace=None,
workspace_config_path=None, overwrite=False,
show_progress=False)

Download file(s) from an Azure ML Datastore that are registered within a given Workspace. The path to the
file(s) to be downloaded, relative to the datastore <datastore_name>, is specified by the parameter “prefix”.
Azure will search for files within the Datastore whose paths begin with this string. If you wish to download
multiple files from the same folder, set <prefix> equal to that folder’s path within the Datastore. If you wish to
download a single file, include both the path to the folder it resides in, as well as the filename itself. If the relevant
file(s) are found, they will be downloaded to the folder specified by <output_folder>. If this directory does not
already exist, it will be created. E.g. if your datastore contains the paths [“foo/bar/1.txt”, “foo/bar/2.txt”] and
you call this function with file_prefix=”foo/bar” and output_folder=”outputs”, you would end up with the files
[“outputs/foo/bar/1.txt”, “outputs/foo/bar/2.txt”]

If not running inside AML and neither a workspace nor the config file are provided, the code will try to locate
a config.json file in any of the parent folders of the current working directory. If that succeeds, that config.json
file will be used to instantiate the workspace.

Parameters
• datastore_name (str) – The name of the Datastore containing the blob to be downloaded.

This Datastore itself must be an instance of an AzureBlobDatastore.

• file_prefix (str) – The prefix to the blob to be downloaded

• output_folder (Path) – The directory into which the blob should be downloaded

• aml_workspace (Optional[Workspace]) – Optional Azure ML Workspace object

• workspace_config_path (Optional[Path]) – Optional path to settings for Azure ML
Workspace

• overwrite (bool) – If True, will overwrite any existing file at the same remote path. If
False, will skip any duplicate file.

• show_progress (bool) – If True, will show the progress of the file download

Return type None

health_azure.fetch_run(workspace, run_recovery_id)
Finds an existing run in an experiment, based on a recovery ID that contains the experiment ID and the actual
RunId. The run can be specified either in the experiment_name:run_id format, or just the run_id.

Parameters
• workspace (Workspace) – the configured AzureML workspace to search for the experi-

ment.

• run_recovery_id (str) – The Run to find. Either in the full recovery ID format, experi-
ment_name:run_id or just the run_id

175

hi-ml

Return type Run

Returns The AzureML run.

health_azure.get_most_recent_run(run_recovery_file, workspace)
Gets the name of the most recently executed AzureML run, instantiates that Run object and returns it.

Parameters
• run_recovery_file (Path) – The path of the run recovery file

• workspace (Workspace) – Azure ML Workspace

Return type Run

Returns The Run

health_azure.get_workspace(aml_workspace=None, workspace_config_path=None)
Retrieve an Azure ML Workspace by going through the following steps:

1. If the function has been called from inside a run in AzureML, it returns the current AzureML
workspace.

2. If a Workspace object has been provided in the aml_workspace argument, return that.

3. If a path to a Workspace config file has been provided, load the workspace according to that
config file.

4. If a Workspace config file is present in the current working directory or one of its parents, load
the

workspace according to that config file.

5. If 3 environment variables are found, use them to identify the workspace
(HIML_RESOURCE_GROUP,

HIML_SUBSCRIPTION_ID, HIML_WORKSPACE_NAME)

If none of the above succeeds, an exception is raised.

Parameters
• aml_workspace (Optional[Workspace]) – If provided this is returned as the AzureML

Workspace.

• workspace_config_path (Optional[Path]) – If not provided with an AzureML
Workspace, then load one given the information in this config

Return type Workspace

Returns An AzureML workspace.

Raises
• ValueError – If none of the available options for accessing the workspace succeeds.

• FileNotFoundError – If the workspace config file is given in workspace_config_path, but
is not present.

health_azure.health_azure_package_setup()
Set up the Python packages where needed. In particular, reduce the logging level for some of the used libraries,
which are particularly talkative in DEBUG mode. Usually when running in DEBUG mode, we want diagnostics
about the model building itself, but not for the underlying libraries.

Return type None

176 Chapter 36. health_azure Package

hi-ml

health_azure.is_running_in_azure_ml(aml_run=<azureml.core.run._OfflineRun object>)
Returns True if the given run is inside of an AzureML machine, or False if it is on a machine outside AzureML.
When called without arguments, this functions returns True if the present code is running in AzureML. Note
that in runs with “compute_target=’local’” this function will also return True. Such runs execute outside of
AzureML, but are able to log all their metrics, etc to an AzureML run.

Parameters aml_run (Run) – The run to check. If omitted, use the default run in RUN_CONTEXT

Return type bool

Returns True if the given run is inside of an AzureML machine, or False if it is a machine outside
AzureML.

health_azure.object_to_yaml(o)
Converts an object to a YAML string representation. This is done by recursively traversing all attributes and
writing them out to YAML if they are basic datatypes.

Parameters o (Any) – The object to inspect.

Return type str

Returns A string in YAML format.

health_azure.set_environment_variables_for_multi_node()
Sets the environment variables that PyTorch Lightning needs for multi-node training.

Return type None

health_azure.set_logging_levels(levels)
Sets the logging levels for the given module-level loggers.

Parameters levels (Dict[str, int]) – A mapping from module name to desired logging level.

Return type None

health_azure.split_recovery_id(id_str)
Splits a run ID into the experiment name and the actual run. The argument can be in the format ‘experi-
ment_name:run_id’, or just a run ID like user_branch_abcde12_123. In the latter case, everything before the
last two alphanumeric parts is assumed to be the experiment name.

Parameters id_str (str) – The string run ID.

Return type Tuple[str, str]

Returns experiment name and run name

health_azure.submit_run(workspace, experiment_name, script_run_config, tags=None,
wait_for_completion=False, wait_for_completion_show_output=False,
display_name=None)

Starts an AzureML run on a given workspace, via the script_run_config.

Parameters
• workspace (Workspace) – The AzureML workspace to use.

• experiment_name (str) – The name of the experiment that will be used or created. If the
experiment name contains characters that are not valid in Azure, those will be removed.

• script_run_config (Union[ScriptRunConfig, HyperDriveConfig]) – The settings
that describe which script should be run.

• tags (Optional[Dict[str, str]]) – A dictionary of string key/value pairs, that will be
added as metadata to the run. If set to None, a default metadata field will be added that only
contains the commandline arguments that started the run.

177

hi-ml

• wait_for_completion (bool) – If False (the default) return after the run is submitted to
AzureML, otherwise wait for the completion of this run (if True).

• wait_for_completion_show_output (bool) – If wait_for_completion is True this pa-
rameter indicates whether to show the run output on sys.stdout.

• display_name (Optional[str]) – The name for the run that will be displayed in the AML
UI. If not provided, a random display name will be generated by AzureML.

Return type Run

Returns An AzureML Run object.

health_azure.submit_to_azure_if_needed(compute_cluster_name='', entry_script=None,
aml_workspace=None, workspace_config_file=None,
ml_client=None, snapshot_root_directory=None,
script_params=None, conda_environment_file=None,
aml_environment_name='', experiment_name=None,
environment_variables=None, pip_extra_index_url='',
private_pip_wheel_path=None,
docker_base_image='mcr.microsoft.com/azureml/openmpi4.1.0-
cuda11.3-cudnn8-ubuntu20.04:20230509.v1',
docker_shm_size='100g', ignored_folders=None,
default_datastore='', input_datasets=None,
output_datasets=None, num_nodes=1,
wait_for_completion=False,
wait_for_completion_show_output=False, max_run_duration='',
submit_to_azureml=None, tags=None, after_submission=None,
hyperdrive_config=None, hyperparam_args=None,
strictly_aml_v1=False, identity_based_auth=False,
pytorch_processes_per_node_v2=None,
use_mpi_run_for_single_node_jobs=True, display_name=None)

Submit a folder to Azure, if needed and run it. Use the commandline flag –azureml to submit to AzureML, and
leave it out to run locally.

Parameters
• after_submission (Union[Callable[[Run], None], Callable[[Job, MLClient], None],
None]) – A function that will be called directly after submitting the job to AzureML. Use this
to, for example, add additional tags or print information about the run. When using AzureML
SDK V1, the only argument to this function is the Run object that was just submitted. When
using AzureML SDK V2, the arguments are (Job, MLClient).

• tags (Optional[Dict[str, str]]) – A dictionary of string key/value pairs, that will be
added as metadata to the run. If set to None, a default metadata field will be added that only
contains the commandline arguments that started the run.

• aml_environment_name (str) – The name of an AzureML environment that should be
used to submit the script. If not provided, an environment will be created from the arguments
to this function.

• max_run_duration (str) – The maximum runtime that is allowed for this job in AzureML.
This is given as a floating point number with a string suffix s, m, h, d for seconds, minutes,
hours, day. Examples: ‘3.5h’, ‘2d’

• experiment_name (Optional[str]) – The name of the AzureML experiment in which the
run should be submitted. If omitted, this is created based on the name of the current script.

• entry_script (Union[Path, str, None]) – The script that should be run in AzureML

178 Chapter 36. health_azure Package

hi-ml

• compute_cluster_name (str) – The name of the AzureML cluster that should run the job.
This can be a cluster with CPU or GPU machines.

• conda_environment_file (Union[Path, str, None]) – The conda configuration file that
describes which packages are necessary for your script to run.

• aml_workspace (Optional[Workspace]) – There are two optional parameters used to
glean an existing AzureML Workspace. The simplest is to pass it in as a parameter.

• workspace_config_file (Union[Path, str, None]) – The 2nd option is to specify the
path to the config.json file downloaded from the Azure portal from which we can retrieve the
existing Workspace.

• ml_client (Optional[MLClient]) – An Azure MLClient object for interacting with Azure
resources.

• snapshot_root_directory (Union[Path, str, None]) – The directory that contains all
code that should be packaged and sent to AzureML. All Python code that the script uses must
be copied over.

• ignored_folders (Optional[List[Union[Path, str]]]) – A list of folders to exclude
from the snapshot when copying it to AzureML.

• script_params (Optional[List[str]]) – A list of parameters to pass on to the script as it
runs in AzureML. If None (the default), these will be copied over from sys.argv (excluding
the –azureml flag, if found).

• environment_variables (Optional[Dict[str, str]]) – The environment variables that
should be set when running in AzureML.

• docker_base_image (str) – The Docker base image that should be used when creating a
new Docker image. The list of available images can be found here: https://github.com/Azure/
AzureML-Containers The default image is mcr.microsoft.com/azureml/openmpi3.1.2-
cuda10.2-cudnn8-ubuntu18.04

• docker_shm_size (str) – The Docker shared memory size that should be used when cre-
ating a new Docker image. Default value is ‘100g’.

• pip_extra_index_url (str) – If provided, use this PIP package index to find additional
packages when building the Docker image.

• private_pip_wheel_path (Union[Path, str, None]) – If provided, add this wheel as a
private package to the AzureML workspace.

• default_datastore (str) – The data store in your AzureML workspace, that points to
your training data in blob storage. This is described in more detail in the README.

• input_datasets (Optional[List[Union[str, DatasetConfig]]]) – The script will con-
sume all data in folder in blob storage as the input. The folder must exist in blob storage, in
the location that you gave when creating the datastore. Once the script has run, it will also
register the data in this folder as an AzureML dataset.

• output_datasets (Optional[List[Union[str, DatasetConfig]]]) – The script will
create a temporary folder when running in AzureML, and while the job writes data to that
folder, upload it to blob storage, in the data store.

• num_nodes (int) – The number of nodes to use in distributed training on AzureML.
When using a value > 1, multiple nodes in AzureML will be started. If py-
torch_processes_per_node_v2=None, the job will be submitted as a multi-node MPI
job, with 1 process per node. This is suitable for PyTorch Lightning jobs. If py-
torch_processes_per_node_v2 is not None, a job with framework “PyTorch” and communi-
cation backend “nccl” will be started. pytorch_processes_per_node_v2 will guide the num-

179

https://github.com/Azure/AzureML-Containers
https://github.com/Azure/AzureML-Containers

hi-ml

ber of processes per node. This is suitable for plain PyTorch training jobs without the use of
frameworks like PyTorch Lightning.

• wait_for_completion (bool) – If False (the default) return after the run is submitted to
AzureML, otherwise wait for the completion of this run (if True).

• wait_for_completion_show_output (bool) – If wait_for_completion is True this pa-
rameter indicates whether to show the run output on sys.stdout.

• submit_to_azureml (Optional[bool]) – If True, the codepath to create an AzureML run
will be executed. If False, the codepath for local execution (i.e., return immediately) will be
executed. If not provided (None), submission to AzureML will be triggered if the comman-
dline flag ‘–azureml’ is present in sys.argv

• hyperdrive_config (Optional[HyperDriveConfig]) – A configuration object for Hy-
perdrive (hyperparameter search).

• strictly_aml_v1 (bool) – If True, use Azure ML SDK v1. Otherwise, attempt to use
Azure ML SDK v2.

• pytorch_processes_per_node_v2 (Optional[int]) – For plain PyTorch multi-GPU
processing: The number of processes per node. This is only supported with AML SDK v2,
and ignored in v1. If supplied, the job will be submitted as using the “pytorch” framework
(rather than “Python”), and using “nccl” as the communication backend.

• use_mpi_run_for_single_node_jobs (bool) – If True, even single node jobs with SDK
v2 will be run as distributed MPI jobs. This is required for Kubernetes compute. If False,
single node jobs will not be run as distributed jobs. This setting only affects jobs submitted
with SDK v2 (when strictly_aml_v1=False)

• display_name (Optional[str]) – The name for the run that will be displayed in the AML
UI. If not provided, a random display name will be generated by AzureML.

Return type AzureRunInfo
Returns If the script is submitted to AzureML then we terminate python as the script should be

executed in AzureML, otherwise we return a AzureRunInfo object.

health_azure.torch_barrier()
This is a barrier to use in distributed jobs. Use it to make all processes that participate in a distributed pytorch
job to wait for each other. When torch.distributed is not set up or not found, the function exits immediately.

Return type None

health_azure.upload_to_datastore(datastore_name, local_data_folder, remote_path, aml_workspace=None,
workspace_config_path=None, overwrite=False, show_progress=False)

Upload a folder to an Azure ML Datastore that is registered within a given Workspace. Note that this will upload
all files within the folder, but will not copy the folder itself. E.g. if you specify the local_data_dir=”foo/bar” and
that contains the files [“1.txt”, “2.txt”], and you specify the remote_path=”baz”, you would see the following
paths uploaded to your Datastore: [“baz/1.txt”, “baz/2.txt”]

If not running inside AML and neither a workspace nor the config file are provided, the code will try to locate
a config.json file in any of the parent folders of the current working directory. If that succeeds, that config.json
file will be used to instantiate the workspace.

Parameters
• datastore_name (str) – The name of the Datastore to which the blob should be uploaded.

This Datastore itself must be an instance of an AzureBlobDatastore

• local_data_folder (Path) – The path to the local directory containing the data to be
uploaded

180 Chapter 36. health_azure Package

hi-ml

• remote_path (Path) – The path to which the blob should be uploaded

• aml_workspace (Optional[Workspace]) – Optional Azure ML Workspace object

• workspace_config_path (Optional[Path]) – Optional path to settings for Azure ML
Workspace

• overwrite (bool) – If True, will overwrite any existing file at the same remote path. If
False, will skip any duplicate files and continue to the next.

• show_progress (bool) – If True, will show the progress of the file download

Return type None

health_azure.write_yaml_to_object(o, yaml_string, strict=False)
Writes a serialized object in YAML format back into an object, assuming that the attributes of the object and the
YAML field names are in sync.

Parameters strict (bool) – If True, any mismatch of field names will raise a ValueError. If False,
only a warning will be

printed. Note that the object may have been modified even if an error is raised. :type o: Any :param o: The
object to write to. :type yaml_string: str :param yaml_string: A YAML formatted string with attribute names
and values.

Return type None

36.1 Functions

create_aml_run_object(experiment_name[, . . .]) Creates an AzureML Run object in the given workspace,
or in the workspace given by the AzureML config file.

create_run_configuration(workspace, . . . [, . . .]) Creates an AzureML run configuration, that contains in-
formation about environment, multi node execution, and
Docker.

create_script_run(script_params[, . . .]) Creates an AzureML ScriptRunConfig object, that holds
the information about the snapshot, the entry script, and
its arguments.

download_files_from_run_id(run_id, out-
put_folder)

For a given Azure ML run id, first retrieve the Run, and
then download all files, which optionally start with a
given prefix.

download_checkpoints_from_run_id(run_id, . . .) Given an Azure ML run id, download all files from a
given checkpoint directory within that run, to the path
specified by output_path.

download_from_datastore(datastore_name, . . .) Download file(s) from an Azure ML Datastore that are
registered within a given Workspace.

fetch_run(workspace, run_recovery_id) Finds an existing run in an experiment, based on a re-
covery ID that contains the experiment ID and the actual
RunId.

get_most_recent_run(run_recovery_file,
workspace)

Gets the name of the most recently executed AzureML
run, instantiates that Run object and returns it.

get_workspace([aml_workspace, . . .]) Retrieve an Azure ML Workspace by going through the
following steps:

is_running_in_azure_ml([aml_run]) Returns True if the given run is inside of an AzureML
machine, or False if it is on a machine outside AzureML.

continues on next page

36.1. Functions 181

hi-ml

Table 1 – continued from previous page
set_environment_variables_for_multi_node() Sets the environment variables that PyTorch Lightning

needs for multi-node training.
split_recovery_id(id_str) Splits a run ID into the experiment name and the actual

run.
submit_run(workspace, experiment_name, . . .) Starts an AzureML run on a given workspace, via the

script_run_config.
submit_to_azure_if_needed([. . .]) Submit a folder to Azure, if needed and run it.
torch_barrier() This is a barrier to use in distributed jobs.
upload_to_datastore(datastore_name, . . . [, . . .]) Upload a folder to an Azure ML Datastore that is regis-

tered within a given Workspace.
create_crossval_hyperdrive_config(num_splits) Creates an Azure ML HyperDriveConfig object for run-

ning cross validation.
aggregate_hyperdrive_metrics(child_run_arg_name)For a given HyperDriveRun object, or id of a Hyper-

DriveRun, retrieves the metrics from each of its chil-
dren and then aggregates it. Optionally filters the met-
rics logged in the Run, by providing a list of metrics
to keep. Returns a DataFrame where each column is
one child run, and each row is a metric logged by that
child run. For example, for a HyperDrive run with 2
children, where each logs epoch, accuracy and loss, the
result would look like::.

object_to_yaml(o) Converts an object to a YAML string representation.
write_yaml_to_object(o, yaml_string[, strict]) Writes a serialized object in YAML format back into an

object, assuming that the attributes of the object and the
YAML field names are in sync.

health_azure_package_setup() Set up the Python packages where needed.
set_logging_levels(levels) Sets the logging levels for the given module-level log-

gers.

36.1.1 create_aml_run_object

health_azure.create_aml_run_object(experiment_name, run_name=None, workspace=None,
workspace_config_path=None, snapshot_directory=None)

Creates an AzureML Run object in the given workspace, or in the workspace given by the AzureML config
file. This Run object can be used to write metrics to AzureML, upload files, etc, when the code is not running
in AzureML. After finishing all operations, use run.flush() to write metrics to the cloud, and run.complete() or
run.fail().

Example: >>>run = create_aml_run_object(experiment_name=”run_on_my_vm”, run_name=”try1”)
>>>run.log(“foo”, 1.23) >>>run.flush() >>>run.complete()

Parameters
• experiment_name (str) – The AzureML experiment that should hold the run that will be

created.

• run_name (Optional[str]) – An optional name for the run (this will be used as the display
name in the AzureML UI)

• workspace (Optional[Workspace]) – If provided, use this workspace to create the run in.
If not provided, use the workspace specified by the config.json file in the folder or its parent
folder(s).

182 Chapter 36. health_azure Package

hi-ml

• workspace_config_path (Optional[Path]) – If not provided with an AzureML
workspace, then load one given the information in this config file.

• snapshot_directory (Union[Path, str, None]) – The folder that should be included as
the code snapshot. By default, no snapshot is created (snapshot_directory=None or snap-
shot_directory=””). Set this to the folder that contains all the code your experiment uses.
You can use a file .amlignore to skip specific files or folders, akin to .gitignore

Return type Run

Returns An AzureML Run object.

36.1.2 create_run_configuration

health_azure.create_run_configuration(workspace, compute_cluster_name,
conda_environment_file=None, aml_environment_name='',
environment_variables=None, pip_extra_index_url='',
private_pip_wheel_path=None, docker_base_image='',
docker_shm_size='', num_nodes=1, max_run_duration='',
input_datasets=None, output_datasets=None)

Creates an AzureML run configuration, that contains information about environment, multi node execution, and
Docker.

Parameters
• workspace (Workspace) – The AzureML Workspace to use.

• aml_environment_name (str) – The name of an AzureML environment that should
be used to submit the script. If not provided, an environment will be created from
the arguments to this function (conda_environment_file, pip_extra_index_url, environ-
ment_variables, docker_base_image)

• max_run_duration (str) – The maximum runtime that is allowed for this job in AzureML.
This is given as a floating point number with a string suffix s, m, h, d for seconds, minutes,
hours, day. Examples: ‘3.5h’, ‘2d’

• compute_cluster_name (str) – The name of the AzureML cluster that should run the job.
This can be a cluster with CPU or GPU machines.

• conda_environment_file (Optional[Path]) – The conda configuration file that de-
scribes which packages are necessary for your script to run.

• environment_variables (Optional[Dict[str, str]]) – The environment variables that
should be set when running in AzureML.

• docker_base_image (str) – The Docker base image that should be used when creating a
new Docker image.

• docker_shm_size (str) – The Docker shared memory size that should be used when cre-
ating a new Docker image.

• pip_extra_index_url (str) – If provided, use this PIP package index to find additional
packages when building the Docker image.

• private_pip_wheel_path (Optional[Path]) – If provided, add this wheel as a private
package to the AzureML workspace.

• conda_environment_file – The file that contains the Conda environment definition.

• input_datasets (Optional[List[DatasetConfig]]) – The script will consume all data
in folder in blob storage as the input. The folder must exist in blob storage, in the location

36.1. Functions 183

hi-ml

that you gave when creating the datastore. Once the script has run, it will also register the
data in this folder as an AzureML dataset.

• output_datasets (Optional[List[DatasetConfig]]) – The script will create a tempo-
rary folder when running in AzureML, and while the job writes data to that folder, upload it
to blob storage, in the data store.

• num_nodes (int) – The number of nodes to use in distributed training on AzureML.

Return type RunConfiguration

Returns

36.1.3 create_script_run

health_azure.create_script_run(script_params, snapshot_root_directory=None, entry_script=None)
Creates an AzureML ScriptRunConfig object, that holds the information about the snapshot, the entry script, and
its arguments.

Parameters
• script_params (List[str]) – A list of parameter to pass on to the script as it

runs in AzureML. Required arg. Script parameters can be generated using the
_get_script_params() function.

• snapshot_root_directory (Optional[Path]) – The directory that contains all code that
should be packaged and sent to AzureML. All Python code that the script uses must be copied
over.

• entry_script (Union[Path, str, None]) – The script that should be run in AzureML. If
None, the current main Python file will be executed.

Return type ScriptRunConfig

Returns

36.1.4 download_files_from_run_id

health_azure.download_files_from_run_id(run_id, output_folder, prefix='', workspace=None,
workspace_config_path=None, validate_checksum=False)

For a given Azure ML run id, first retrieve the Run, and then download all files, which optionally start with a
given prefix. E.g. if the Run creates a folder called “outputs”, which you wish to download all files from, specify
prefix=”outputs”. To download all files associated with the run, leave prefix empty.

If not running inside AML and neither a workspace nor the config file are provided, the code will try to locate
a config.json file in any of the parent folders of the current working directory. If that succeeds, that config.json
file will be used to instantiate the workspace.

If function is called in a distributed PyTorch training script, the files will only be downloaded once per node (i.e,
all process where is_local_rank_zero() == True). All processes will exit this function once all downloads are
completed.

Parameters
• run_id (str) – The id of the Azure ML Run

• output_folder (Path) – Local directory to which the Run files should be downloaded.

• prefix (str) – Optional prefix to filter Run files by

• workspace (Optional[Workspace]) – Optional Azure ML Workspace object

184 Chapter 36. health_azure Package

hi-ml

• workspace_config_path (Optional[Path]) – Optional path to settings for Azure ML
Workspace

• validate_checksum (bool) – Whether to validate the content from HTTP response

Return type None

36.1.5 download_checkpoints_from_run_id

health_azure.download_checkpoints_from_run_id(run_id, checkpoint_path_or_folder, output_folder,
aml_workspace=None, workspace_config_path=None)

Given an Azure ML run id, download all files from a given checkpoint directory within that run, to the path spec-
ified by output_path. If running in AML, will take the current workspace. Otherwise, if neither aml_workspace
nor workspace_config_path are provided, will try to locate a config.json file in any of the parent folders of the
current working directory.

Parameters
• run_id (str) – The id of the run to download checkpoints from

• checkpoint_path_or_folder (str) – The path to the either a single checkpoint file, or a
directory of checkpoints within the run files. If a folder is provided, all files within it will be
downloaded.

• output_folder (Path) – The path to which the checkpoints should be stored

• aml_workspace (Optional[Workspace]) – Optional AML workspace object

• workspace_config_path (Optional[Path]) – Optional workspace config file

Return type None

36.1.6 download_from_datastore

health_azure.download_from_datastore(datastore_name, file_prefix, output_folder, aml_workspace=None,
workspace_config_path=None, overwrite=False,
show_progress=False)

Download file(s) from an Azure ML Datastore that are registered within a given Workspace. The path to the
file(s) to be downloaded, relative to the datastore <datastore_name>, is specified by the parameter “prefix”.
Azure will search for files within the Datastore whose paths begin with this string. If you wish to download
multiple files from the same folder, set <prefix> equal to that folder’s path within the Datastore. If you wish to
download a single file, include both the path to the folder it resides in, as well as the filename itself. If the relevant
file(s) are found, they will be downloaded to the folder specified by <output_folder>. If this directory does not
already exist, it will be created. E.g. if your datastore contains the paths [“foo/bar/1.txt”, “foo/bar/2.txt”] and
you call this function with file_prefix=”foo/bar” and output_folder=”outputs”, you would end up with the files
[“outputs/foo/bar/1.txt”, “outputs/foo/bar/2.txt”]

If not running inside AML and neither a workspace nor the config file are provided, the code will try to locate
a config.json file in any of the parent folders of the current working directory. If that succeeds, that config.json
file will be used to instantiate the workspace.

Parameters
• datastore_name (str) – The name of the Datastore containing the blob to be downloaded.

This Datastore itself must be an instance of an AzureBlobDatastore.

• file_prefix (str) – The prefix to the blob to be downloaded

• output_folder (Path) – The directory into which the blob should be downloaded

36.1. Functions 185

hi-ml

• aml_workspace (Optional[Workspace]) – Optional Azure ML Workspace object

• workspace_config_path (Optional[Path]) – Optional path to settings for Azure ML
Workspace

• overwrite (bool) – If True, will overwrite any existing file at the same remote path. If
False, will skip any duplicate file.

• show_progress (bool) – If True, will show the progress of the file download

Return type None

36.1.7 fetch_run

health_azure.fetch_run(workspace, run_recovery_id)
Finds an existing run in an experiment, based on a recovery ID that contains the experiment ID and the actual
RunId. The run can be specified either in the experiment_name:run_id format, or just the run_id.

Parameters
• workspace (Workspace) – the configured AzureML workspace to search for the experi-

ment.

• run_recovery_id (str) – The Run to find. Either in the full recovery ID format, experi-
ment_name:run_id or just the run_id

Return type Run

Returns The AzureML run.

36.1.8 get_most_recent_run

health_azure.get_most_recent_run(run_recovery_file, workspace)
Gets the name of the most recently executed AzureML run, instantiates that Run object and returns it.

Parameters
• run_recovery_file (Path) – The path of the run recovery file

• workspace (Workspace) – Azure ML Workspace

Return type Run

Returns The Run

36.1.9 get_workspace

health_azure.get_workspace(aml_workspace=None, workspace_config_path=None)
Retrieve an Azure ML Workspace by going through the following steps:

1. If the function has been called from inside a run in AzureML, it returns the current AzureML
workspace.

2. If a Workspace object has been provided in the aml_workspace argument, return that.

3. If a path to a Workspace config file has been provided, load the workspace according to that
config file.

4. If a Workspace config file is present in the current working directory or one of its parents, load
the

186 Chapter 36. health_azure Package

hi-ml

workspace according to that config file.

5. If 3 environment variables are found, use them to identify the workspace
(HIML_RESOURCE_GROUP,

HIML_SUBSCRIPTION_ID, HIML_WORKSPACE_NAME)

If none of the above succeeds, an exception is raised.

Parameters
• aml_workspace (Optional[Workspace]) – If provided this is returned as the AzureML

Workspace.

• workspace_config_path (Optional[Path]) – If not provided with an AzureML
Workspace, then load one given the information in this config

Return type Workspace

Returns An AzureML workspace.

Raises
• ValueError – If none of the available options for accessing the workspace succeeds.

• FileNotFoundError – If the workspace config file is given in workspace_config_path, but
is not present.

36.1.10 is_running_in_azure_ml

health_azure.is_running_in_azure_ml(aml_run=<azureml.core.run._OfflineRun object>)
Returns True if the given run is inside of an AzureML machine, or False if it is on a machine outside AzureML.
When called without arguments, this functions returns True if the present code is running in AzureML. Note
that in runs with “compute_target=’local’” this function will also return True. Such runs execute outside of
AzureML, but are able to log all their metrics, etc to an AzureML run.

Parameters aml_run (Run) – The run to check. If omitted, use the default run in RUN_CONTEXT

Return type bool

Returns True if the given run is inside of an AzureML machine, or False if it is a machine outside
AzureML.

36.1.11 set_environment_variables_for_multi_node

health_azure.set_environment_variables_for_multi_node()
Sets the environment variables that PyTorch Lightning needs for multi-node training.

Return type None

36.1. Functions 187

hi-ml

36.1.12 split_recovery_id

health_azure.split_recovery_id(id_str)
Splits a run ID into the experiment name and the actual run. The argument can be in the format ‘experi-
ment_name:run_id’, or just a run ID like user_branch_abcde12_123. In the latter case, everything before the
last two alphanumeric parts is assumed to be the experiment name.

Parameters id_str (str) – The string run ID.

Return type Tuple[str, str]

Returns experiment name and run name

36.1.13 submit_run

health_azure.submit_run(workspace, experiment_name, script_run_config, tags=None,
wait_for_completion=False, wait_for_completion_show_output=False,
display_name=None)

Starts an AzureML run on a given workspace, via the script_run_config.

Parameters
• workspace (Workspace) – The AzureML workspace to use.

• experiment_name (str) – The name of the experiment that will be used or created. If the
experiment name contains characters that are not valid in Azure, those will be removed.

• script_run_config (Union[ScriptRunConfig, HyperDriveConfig]) – The settings
that describe which script should be run.

• tags (Optional[Dict[str, str]]) – A dictionary of string key/value pairs, that will be
added as metadata to the run. If set to None, a default metadata field will be added that only
contains the commandline arguments that started the run.

• wait_for_completion (bool) – If False (the default) return after the run is submitted to
AzureML, otherwise wait for the completion of this run (if True).

• wait_for_completion_show_output (bool) – If wait_for_completion is True this pa-
rameter indicates whether to show the run output on sys.stdout.

• display_name (Optional[str]) – The name for the run that will be displayed in the AML
UI. If not provided, a random display name will be generated by AzureML.

Return type Run

Returns An AzureML Run object.

188 Chapter 36. health_azure Package

hi-ml

36.1.14 submit_to_azure_if_needed

health_azure.submit_to_azure_if_needed(compute_cluster_name='', entry_script=None,
aml_workspace=None, workspace_config_file=None,
ml_client=None, snapshot_root_directory=None,
script_params=None, conda_environment_file=None,
aml_environment_name='', experiment_name=None,
environment_variables=None, pip_extra_index_url='',
private_pip_wheel_path=None,
docker_base_image='mcr.microsoft.com/azureml/openmpi4.1.0-
cuda11.3-cudnn8-ubuntu20.04:20230509.v1',
docker_shm_size='100g', ignored_folders=None,
default_datastore='', input_datasets=None,
output_datasets=None, num_nodes=1,
wait_for_completion=False,
wait_for_completion_show_output=False, max_run_duration='',
submit_to_azureml=None, tags=None, after_submission=None,
hyperdrive_config=None, hyperparam_args=None,
strictly_aml_v1=False, identity_based_auth=False,
pytorch_processes_per_node_v2=None,
use_mpi_run_for_single_node_jobs=True, display_name=None)

Submit a folder to Azure, if needed and run it. Use the commandline flag –azureml to submit to AzureML, and
leave it out to run locally.

Parameters
• after_submission (Union[Callable[[Run], None], Callable[[Job, MLClient], None],
None]) – A function that will be called directly after submitting the job to AzureML. Use this
to, for example, add additional tags or print information about the run. When using AzureML
SDK V1, the only argument to this function is the Run object that was just submitted. When
using AzureML SDK V2, the arguments are (Job, MLClient).

• tags (Optional[Dict[str, str]]) – A dictionary of string key/value pairs, that will be
added as metadata to the run. If set to None, a default metadata field will be added that only
contains the commandline arguments that started the run.

• aml_environment_name (str) – The name of an AzureML environment that should be
used to submit the script. If not provided, an environment will be created from the arguments
to this function.

• max_run_duration (str) – The maximum runtime that is allowed for this job in AzureML.
This is given as a floating point number with a string suffix s, m, h, d for seconds, minutes,
hours, day. Examples: ‘3.5h’, ‘2d’

• experiment_name (Optional[str]) – The name of the AzureML experiment in which the
run should be submitted. If omitted, this is created based on the name of the current script.

• entry_script (Union[Path, str, None]) – The script that should be run in AzureML

• compute_cluster_name (str) – The name of the AzureML cluster that should run the job.
This can be a cluster with CPU or GPU machines.

• conda_environment_file (Union[Path, str, None]) – The conda configuration file that
describes which packages are necessary for your script to run.

• aml_workspace (Optional[Workspace]) – There are two optional parameters used to
glean an existing AzureML Workspace. The simplest is to pass it in as a parameter.

36.1. Functions 189

hi-ml

• workspace_config_file (Union[Path, str, None]) – The 2nd option is to specify the
path to the config.json file downloaded from the Azure portal from which we can retrieve the
existing Workspace.

• ml_client (Optional[MLClient]) – An Azure MLClient object for interacting with Azure
resources.

• snapshot_root_directory (Union[Path, str, None]) – The directory that contains all
code that should be packaged and sent to AzureML. All Python code that the script uses must
be copied over.

• ignored_folders (Optional[List[Union[Path, str]]]) – A list of folders to exclude
from the snapshot when copying it to AzureML.

• script_params (Optional[List[str]]) – A list of parameters to pass on to the script as it
runs in AzureML. If None (the default), these will be copied over from sys.argv (excluding
the –azureml flag, if found).

• environment_variables (Optional[Dict[str, str]]) – The environment variables that
should be set when running in AzureML.

• docker_base_image (str) – The Docker base image that should be used when creating a
new Docker image. The list of available images can be found here: https://github.com/Azure/
AzureML-Containers The default image is mcr.microsoft.com/azureml/openmpi3.1.2-
cuda10.2-cudnn8-ubuntu18.04

• docker_shm_size (str) – The Docker shared memory size that should be used when cre-
ating a new Docker image. Default value is ‘100g’.

• pip_extra_index_url (str) – If provided, use this PIP package index to find additional
packages when building the Docker image.

• private_pip_wheel_path (Union[Path, str, None]) – If provided, add this wheel as a
private package to the AzureML workspace.

• default_datastore (str) – The data store in your AzureML workspace, that points to
your training data in blob storage. This is described in more detail in the README.

• input_datasets (Optional[List[Union[str, DatasetConfig]]]) – The script will con-
sume all data in folder in blob storage as the input. The folder must exist in blob storage, in
the location that you gave when creating the datastore. Once the script has run, it will also
register the data in this folder as an AzureML dataset.

• output_datasets (Optional[List[Union[str, DatasetConfig]]]) – The script will
create a temporary folder when running in AzureML, and while the job writes data to that
folder, upload it to blob storage, in the data store.

• num_nodes (int) – The number of nodes to use in distributed training on AzureML.
When using a value > 1, multiple nodes in AzureML will be started. If py-
torch_processes_per_node_v2=None, the job will be submitted as a multi-node MPI
job, with 1 process per node. This is suitable for PyTorch Lightning jobs. If py-
torch_processes_per_node_v2 is not None, a job with framework “PyTorch” and communi-
cation backend “nccl” will be started. pytorch_processes_per_node_v2 will guide the num-
ber of processes per node. This is suitable for plain PyTorch training jobs without the use of
frameworks like PyTorch Lightning.

• wait_for_completion (bool) – If False (the default) return after the run is submitted to
AzureML, otherwise wait for the completion of this run (if True).

• wait_for_completion_show_output (bool) – If wait_for_completion is True this pa-
rameter indicates whether to show the run output on sys.stdout.

190 Chapter 36. health_azure Package

https://github.com/Azure/AzureML-Containers
https://github.com/Azure/AzureML-Containers

hi-ml

• submit_to_azureml (Optional[bool]) – If True, the codepath to create an AzureML run
will be executed. If False, the codepath for local execution (i.e., return immediately) will be
executed. If not provided (None), submission to AzureML will be triggered if the comman-
dline flag ‘–azureml’ is present in sys.argv

• hyperdrive_config (Optional[HyperDriveConfig]) – A configuration object for Hy-
perdrive (hyperparameter search).

• strictly_aml_v1 (bool) – If True, use Azure ML SDK v1. Otherwise, attempt to use
Azure ML SDK v2.

• pytorch_processes_per_node_v2 (Optional[int]) – For plain PyTorch multi-GPU
processing: The number of processes per node. This is only supported with AML SDK v2,
and ignored in v1. If supplied, the job will be submitted as using the “pytorch” framework
(rather than “Python”), and using “nccl” as the communication backend.

• use_mpi_run_for_single_node_jobs (bool) – If True, even single node jobs with SDK
v2 will be run as distributed MPI jobs. This is required for Kubernetes compute. If False,
single node jobs will not be run as distributed jobs. This setting only affects jobs submitted
with SDK v2 (when strictly_aml_v1=False)

• display_name (Optional[str]) – The name for the run that will be displayed in the AML
UI. If not provided, a random display name will be generated by AzureML.

Return type AzureRunInfo
Returns If the script is submitted to AzureML then we terminate python as the script should be

executed in AzureML, otherwise we return a AzureRunInfo object.

36.1.15 torch_barrier

health_azure.torch_barrier()
This is a barrier to use in distributed jobs. Use it to make all processes that participate in a distributed pytorch
job to wait for each other. When torch.distributed is not set up or not found, the function exits immediately.

Return type None

36.1.16 upload_to_datastore

health_azure.upload_to_datastore(datastore_name, local_data_folder, remote_path, aml_workspace=None,
workspace_config_path=None, overwrite=False, show_progress=False)

Upload a folder to an Azure ML Datastore that is registered within a given Workspace. Note that this will upload
all files within the folder, but will not copy the folder itself. E.g. if you specify the local_data_dir=”foo/bar” and
that contains the files [“1.txt”, “2.txt”], and you specify the remote_path=”baz”, you would see the following
paths uploaded to your Datastore: [“baz/1.txt”, “baz/2.txt”]

If not running inside AML and neither a workspace nor the config file are provided, the code will try to locate
a config.json file in any of the parent folders of the current working directory. If that succeeds, that config.json
file will be used to instantiate the workspace.

Parameters
• datastore_name (str) – The name of the Datastore to which the blob should be uploaded.

This Datastore itself must be an instance of an AzureBlobDatastore

• local_data_folder (Path) – The path to the local directory containing the data to be
uploaded

• remote_path (Path) – The path to which the blob should be uploaded

36.1. Functions 191

hi-ml

• aml_workspace (Optional[Workspace]) – Optional Azure ML Workspace object

• workspace_config_path (Optional[Path]) – Optional path to settings for Azure ML
Workspace

• overwrite (bool) – If True, will overwrite any existing file at the same remote path. If
False, will skip any duplicate files and continue to the next.

• show_progress (bool) – If True, will show the progress of the file download

Return type None

36.1.17 create_crossval_hyperdrive_config

health_azure.create_crossval_hyperdrive_config(num_splits,
cross_val_index_arg_name='crossval_index',
metric_name='val/loss')

Creates an Azure ML HyperDriveConfig object for running cross validation. Note: this config expects a metric
named <metric_name> to be logged in your training script([see here](https://docs.microsoft.com/en-us/azure/
machine-learning/how-to-tune-hyperparameters#log-metrics-for-hyperparameter-tuning))

Parameters
• num_splits (int) – The number of splits for k-fold cross validation

• cross_val_index_arg_name (str) – The name of the commandline argument that each
of the child runs gets, to indicate which split they should work on.

• metric_name (str) – The name of the metric that the HyperDriveConfig will compare runs
by. Please note that it is your responsibility to make sure a metric with this name is logged
to the Run in your training script

Return type HyperDriveConfig

Returns an Azure ML HyperDriveConfig object

36.1.18 aggregate_hyperdrive_metrics

health_azure.aggregate_hyperdrive_metrics(child_run_arg_name, run_id=None, run=None,
keep_metrics=None, aml_workspace=None,
workspace_config_path=None)

For a given HyperDriveRun object, or id of a HyperDriveRun, retrieves the metrics from each of its children
and then aggregates it. Optionally filters the metrics logged in the Run, by providing a list of metrics to keep.
Returns a DataFrame where each column is one child run, and each row is a metric logged by that child run. For
example, for a HyperDrive run with 2 children, where each logs epoch, accuracy and loss, the result would look
like:

	0	1
epoch	[1, 2, 3]	[1, 2, 3]
accuracy	[0.7, 0.8, 0.9]	[0.71, 0.82, 0.91]
loss	[0.5, 0.4, 0.3]	[0.45, 0.37, 0.29]

here each column is one of the splits/ child runs, and each row is one of the metrics you have logged to the run.

It is possible to log rows and tables in Azure ML by calling run.log_table and run.log_row respectively. In this
case, the DataFrame will contain a Dictionary entry instead of a list, where the keys are the table columns (or
keywords provided to log_row), and the values are the table values. E.g.:

192 Chapter 36. health_azure Package

https://docs.microsoft.com/en-us/azure/machine-learning/how-to-tune-hyperparameters#log-metrics-for-hyperparameter-tuning
https://docs.microsoft.com/en-us/azure/machine-learning/how-to-tune-hyperparameters#log-metrics-for-hyperparameter-tuning

hi-ml

| | 0 | 1 ␣
→˓ |
|----------------|--|-----------------------
→˓--------------------|
| accuracy_table |{'epoch': [1, 2], 'accuracy': [0.7, 0.8]} | {'epoch': [1, 2],
→˓'accuracy': [0.8, 0.9]} |

It is also possible to log plots in Azure ML by calling run.log_image and passing in a matplotlib plot. In this
case, the DataFrame will contain a string representing the path to the artifact that is generated by AML (the saved
plot in the Logs & Outputs pane of your run on the AML portal). E.g.:

| | 0 | 1 ␣
→˓ |
|----------------|---|------------------------
→˓---------------|
| accuracy_plot | aml://artifactId/ExperimentRun/dcid.... | aml://artifactId/
→˓ExperimentRun/dcid...|

Parameters
• child_run_arg_name (str) – the name of the argument given to each child run to denote

its position relative to other child runs (e.g. this arg could equal ‘child_run_index’ - then
each of your child runs should expect to receive the arg ‘–child_run_index’ with a value <=
the total number of child runs)

• run (Optional[Run]) – An Azure ML HyperDriveRun object to aggregate the metrics from.
Either this or run_id must be provided

• run_id (Optional[str]) – The id (type: str) of a parent/ HyperDrive run. Either this or
run must be provided.

• keep_metrics (Optional[List[str]]) – An optional list of metric names to filter the re-
turned metrics by

• aml_workspace (Optional[Workspace]) – If run_id is provided, this is an optional AML
Workspace object to retrieve the Run from

• workspace_config_path (Optional[Path]) – If run_id is provided, this is an optional
path to a config containing details of the AML Workspace object to retrieve the Run from.

Return type DataFrame

Returns A Pandas DataFrame containing the aggregated metrics from each child run

36.1.19 object_to_yaml

health_azure.object_to_yaml(o)
Converts an object to a YAML string representation. This is done by recursively traversing all attributes and
writing them out to YAML if they are basic datatypes.

Parameters o (Any) – The object to inspect.

Return type str

Returns A string in YAML format.

36.1. Functions 193

hi-ml

36.1.20 write_yaml_to_object

health_azure.write_yaml_to_object(o, yaml_string, strict=False)
Writes a serialized object in YAML format back into an object, assuming that the attributes of the object and the
YAML field names are in sync.

Parameters strict (bool) – If True, any mismatch of field names will raise a ValueError. If False,
only a warning will be

printed. Note that the object may have been modified even if an error is raised. :type o: Any :param o: The
object to write to. :type yaml_string: str :param yaml_string: A YAML formatted string with attribute names
and values.

Return type None

36.1.21 health_azure_package_setup

health_azure.health_azure_package_setup()
Set up the Python packages where needed. In particular, reduce the logging level for some of the used libraries,
which are particularly talkative in DEBUG mode. Usually when running in DEBUG mode, we want diagnostics
about the model building itself, but not for the underlying libraries.

Return type None

36.1.22 set_logging_levels

health_azure.set_logging_levels(levels)
Sets the logging levels for the given module-level loggers.

Parameters levels (Dict[str, int]) – A mapping from module name to desired logging level.

Return type None

36.2 Classes

AzureRunInfo(input_datasets, . . .) This class stores all information that a script needs to run
inside and outside of AzureML.

DatasetConfig(name[, datastore, . . .]) Contains information to use AzureML datasets as inputs
or outputs.

36.2.1 AzureRunInfo

class health_azure.AzureRunInfo(input_datasets, output_datasets, mount_contexts, run,
is_running_in_azure_ml, output_folder, logs_folder)

Bases: object

This class stores all information that a script needs to run inside and outside of AzureML. It is return from
submit_to_azure_if_needed, where the return value depends on whether the script is inside or outside AzureML.

Please check the source code for detailed documentation for all fields.

input_datasets: List[Optional[pathlib.Path]]
A list of folders that contain all the datasets that the script uses as inputs. Input datasets must be specified

194 Chapter 36. health_azure Package

hi-ml

when calling submit_to_azure_if_needed. Here, they are made available as Path objects. If no input datasets
are specified, the list is empty.

is_running_in_azure_ml: bool
If True, the present script is executing inside AzureML. If False, outside AzureML.

logs_folder: Optional[pathlib.Path]
The folder into which all log files (for example, tensorboard) should be written. All files written to this
folder will be uploaded to blob storage regularly during the script run.

mount_contexts: List[azureml.dataprep.fuse.daemon.MountContext]
A list of mount contexts for input datasets when running outside AzureML. There will be a mount context
for each input dataset where there is no local_folder, there is a workspace, and use_mounting is set. This
list is maintained only to prevent exit from these contexts until the RunInfo object is deleted.

output_datasets: List[Optional[pathlib.Path]]
A list of folders that contain all the datasets that the script uses as outputs. Output datasets must be specified
when calling submit_to_azure_if_needed. Here, they are made available as Path objects. If no output
datasets are specified, the list is empty.

output_folder: Optional[pathlib.Path]
The output folder into which all script outputs should be written, if they should be later available in the
AzureML portal. Files written to this folder will be uploaded to blob storage at the end of the script run.

run: Optional[azureml.core.run.Run]
An AzureML Run object if the present script is executing inside AzureML, or None if outside of AzureML.
The Run object has methods to log metrics, upload files, etc.

36.2.2 DatasetConfig

class health_azure.DatasetConfig(name, datastore='', overwrite_existing=True, version=None,
use_mounting=None, target_folder=None, local_folder=None)

Bases: object

Contains information to use AzureML datasets as inputs or outputs.

Parameters
• name (str) – The name of the dataset, as it was registered in the AzureML workspace. For

output datasets, this will be the name given to the newly created dataset.

• datastore (str) – The name of the AzureML datastore that holds the dataset. This can
be empty if the AzureML workspace has only a single datastore, or if the default datastore
should be used.

• overwrite_existing (bool) – Only applies to uploading datasets. If True, the dataset will
be overwritten if it already exists. If False, the dataset creation will fail if the dataset already
exists.

• version (Optional[int]) – The version of the dataset that should be used. This is only
used for input datasets. If the version is not specified, the latest version will be used.

• use_mounting (Optional[bool]) – If True, the dataset will be “mounted”, that is, indi-
vidual files will be read or written on-demand over the network. If False, the dataset will
be fully downloaded before the job starts, respectively fully uploaded at job end for output
datasets. Defaults: False (downloading) for datasets that are script inputs, True (mounting)
for datasets that are script outputs.

36.2. Classes 195

hi-ml

• target_folder (Union[Path, str, None]) – The folder into which the dataset should be
downloaded or mounted. If left empty, a random folder on /tmp will be chosen. Do NOT
use “.” as the target_folder.

• local_folder (Union[Path, str, None]) – The folder on the local machine at which the
dataset is available. This is used only for runs outside of AzureML. If this is empty then the
target_folder will be used to mount or download the dataset.

Methods Summary

to_input_dataset(dataset_index, workspace, . . .) Creates a configuration for using an AzureML dataset
inside of an AzureML run.

to_input_dataset_local(workspace) Return a local path to the dataset when outside of an
AzureML run.

to_output_dataset(workspace, dataset_index) Creates a configuration to write a script output to an
AzureML dataset.

Methods Documentation

to_input_dataset(dataset_index, workspace, strictly_aml_v1, ml_client=None)
Creates a configuration for using an AzureML dataset inside of an AzureML run. This will make the
AzureML dataset with given name available as a named input, using INPUT_0 as the key for dataset index
0.

Parameters
• workspace (Workspace) – The AzureML workspace to read from.

• dataset_index (int) – Suffix for using datasets as named inputs, the dataset will be
marked INPUT_{index}

• strictly_aml_v1 (bool) – If True, use Azure ML SDK v1. Otherwise, attempt to use
Azure ML SDK v2.

• ml_client (Optional[MLClient]) – An Azure MLClient object for interacting with
Azure resources.

Return type Optional[DatasetConsumptionConfig]

to_input_dataset_local(workspace)
Return a local path to the dataset when outside of an AzureML run. If local_folder is supplied, then this
is assumed to be a local dataset, and this is returned. Otherwise the dataset is mounted or downloaded to
either the target folder or a temporary folder and that is returned. If self.name refers to a v2 dataset, it is
not possible to mount the data here, therefore a tuple of Nones will be returned.

Parameters workspace (Workspace) – The AzureML workspace to read from.

Return type Tuple[Path, Optional[MountContext]]

Returns Tuple of (path to dataset, optional mountcontext)

to_output_dataset(workspace, dataset_index)
Creates a configuration to write a script output to an AzureML dataset. The name and datastore of this new
dataset will be taken from the present object.

Parameters
• workspace (Workspace) – The AzureML workspace to read from.

196 Chapter 36. health_azure Package

hi-ml

• dataset_index (int) – Suffix for using datasets as named inputs, the dataset will be
marked OUTPUT_{index}

Return type OutputFileDatasetConfig

Returns An AzureML OutputFileDatasetConfig object, representing the output dataset.

to_input_dataset(dataset_index, workspace, strictly_aml_v1, ml_client=None)
Creates a configuration for using an AzureML dataset inside of an AzureML run. This will make the
AzureML dataset with given name available as a named input, using INPUT_0 as the key for dataset index
0.

Parameters
• workspace (Workspace) – The AzureML workspace to read from.

• dataset_index (int) – Suffix for using datasets as named inputs, the dataset will be
marked INPUT_{index}

• strictly_aml_v1 (bool) – If True, use Azure ML SDK v1. Otherwise, attempt to use
Azure ML SDK v2.

• ml_client (Optional[MLClient]) – An Azure MLClient object for interacting with
Azure resources.

Return type Optional[DatasetConsumptionConfig]

to_input_dataset_local(workspace)
Return a local path to the dataset when outside of an AzureML run. If local_folder is supplied, then this
is assumed to be a local dataset, and this is returned. Otherwise the dataset is mounted or downloaded to
either the target folder or a temporary folder and that is returned. If self.name refers to a v2 dataset, it is
not possible to mount the data here, therefore a tuple of Nones will be returned.

Parameters workspace (Workspace) – The AzureML workspace to read from.

Return type Tuple[Path, Optional[MountContext]]

Returns Tuple of (path to dataset, optional mountcontext)

to_output_dataset(workspace, dataset_index)
Creates a configuration to write a script output to an AzureML dataset. The name and datastore of this new
dataset will be taken from the present object.

Parameters
• workspace (Workspace) – The AzureML workspace to read from.

• dataset_index (int) – Suffix for using datasets as named inputs, the dataset will be
marked OUTPUT_{index}

Return type OutputFileDatasetConfig

Returns An AzureML OutputFileDatasetConfig object, representing the output dataset.

36.2. Classes 197

hi-ml

198 Chapter 36. health_azure Package

CHAPTER

THIRTYSEVEN

HEALTH_ML PACKAGE

class health_ml.Runner(project_root)
This class contains the high-level logic to start a training run: choose a model configuration by name, submit to
AzureML if needed, or otherwise start the actual training and test loop.

Parameters project_root (Path) – The root folder that contains all of the source code that should
be executed.

additional_run_tags(script_params)
Gets the set of tags that will be added to the AzureML run as metadata.

Parameters script_params (List[str]) – The commandline arguments used to invoke the
present script.

Return type Dict[str, str]

parse_and_load_model()
Parses the command line arguments, and creates configuration objects for the model itself, and for the
Azure-related parameters. Sets self.experiment_config to its proper values. Returns the parser output from
parsing the model commandline arguments.

Return type ParserResult

Returns ParserResult object containing args, overrides and settings

run()
The main entry point for training and testing models from the commandline. This chooses a model to train
via a commandline argument, runs training or testing, and writes all required info to disk and logs.

Return type Tuple[LightningContainer, AzureRunInfo]

Returns a tuple of the LightningContainer object and an AzureRunInfo containing all informa-
tion about the present run (whether running in AzureML or not)

run_in_situ(azure_run_info)
Actually run the AzureML job; this method will typically run on an Azure VM.

Parameters azure_run_info (AzureRunInfo) – Contains all information about the present
run in AzureML, in particular where the

datasets are mounted.

Return type None

submit_to_azureml_if_needed()
Submit a job to AzureML, returning the resulting Run object, or exiting if we were asked to wait for com-
pletion and the Run did not succeed.

Return type AzureRunInfo

199

hi-ml

Returns an AzureRunInfo object containing all of the details of the present run. If AzureML is
not specified, the attribute ‘run’ will None, but the object still contains helpful information
about datasets etc

validate()
Runs sanity checks on the whole experiment.

Return type None

class health_ml.TrainingRunner(experiment_config, container, project_root=None)
Driver class to run an ML experiment. Note that the project root argument MUST be supplied when using hi-ml
as a package!

Parameters
• experiment_config (ExperimentConfig) – The ExperimentConfig object to use for

training.

• container (LightningContainer) – The LightningContainer object to use for training.

• project_root (Optional[Path]) – Project root. This should only be omitted if calling
run_ml from the test suite. Supplying it is crucial when using hi-ml as a package or submod-
ule!

after_ddp_cleanup(environ_before_training)
Run processes cleanup after ddp context to prepare for single device inference. Kill all processes in DDP
besides rank 0.

Return type None

end_training(environ_before_training)
Cleanup after training is done. This is called after the trainer has finished fitting the data. This is called to
update the checkpoint handler state and remove redundant checkpoint files. If running inference on a single
device, this is also called to kill all processes besides rank 0.

Return type None

get_data_module()
Reads the datamodule that should be used for training or valuation from the container. This must be over-
ridden in subclasses.

Return type LightningDataModule

init_inference()
Prepare the trainer for running inference on the validation and test set. This chooses a checkpoint, initializes
the PL Trainer object, and chooses the right data module. The hook for running inference on the validation
set is run (LightningContainer.on_run_extra_validation_epoch) is first called to reflect any changes to the
model or datamodule states before running inference.

Return type None

init_training()
Execute some bookkeeping tasks only once if running distributed and initialize the runner’s trainer object.

Return type None

is_crossval_disabled_or_child_0()
Returns True if the present run is a non-cross-validation run, or child run 0 of a cross-validation run.

Return type bool

run()
Driver function to run a ML experiment

200 Chapter 37. health_ml Package

hi-ml

Return type None

run_training()
The main training loop. It creates the Pytorch model based on the configuration options passed in, creates a
Pytorch Lightning trainer, and trains the model. If a checkpoint was specified, then it loads the checkpoint
before resuming training. The cwd is changed to the outputs folder so that the model can write to current
working directory, and still everything is put into the right place in AzureML (only the contents of the
“outputs” folder is treated as a result file).

Return type None

run_validation()
Run validation on the validation set for all models to save time/memory consuming outputs. This is done
in inference only mode or when the user has requested an extra validation epoch. The cwd is changed to
the outputs folder

Return type None

37.1 Classes

TrainingRunner(experiment_config, container) Driver class to run an ML experiment.
Runner(project_root) This class contains the high-level logic to start a training

run: choose a model configuration by name, submit to
AzureML if needed, or otherwise start the actual training
and test loop.

37.1.1 TrainingRunner

class health_ml.TrainingRunner(experiment_config, container, project_root=None)
Bases: health_ml.runner_base.RunnerBase

Driver class to run an ML experiment. Note that the project root argument MUST be supplied when using hi-ml
as a package!

Parameters
• experiment_config (ExperimentConfig) – The ExperimentConfig object to use for

training.

• container (LightningContainer) – The LightningContainer object to use for training.

• project_root (Optional[Path]) – Project root. This should only be omitted if calling
run_ml from the test suite. Supplying it is crucial when using hi-ml as a package or submod-
ule!

37.1. Classes 201

hi-ml

Methods Summary

after_ddp_cleanup(environ_before_training) Run processes cleanup after ddp context to prepare
for single device inference.

end_training(environ_before_training) Cleanup after training is done.
get_data_module() Reads the datamodule that should be used for training

or valuation from the container.
get_multiple_trainloader_mode()

rtype str

init_inference() Prepare the trainer for running inference on the vali-
dation and test set.

init_training() Execute some bookkeeping tasks only once if run-
ning distributed and initialize the runner’s trainer ob-
ject.

is_crossval_disabled_or_child_0() Returns True if the present run is a non-cross-
validation run, or child run 0 of a cross-validation
run.

run() Driver function to run a ML experiment
run_regression_test()

rtype None

run_training() The main training loop.
run_validation() Run validation on the validation set for all models to

save time/memory consuming outputs.

Methods Documentation

after_ddp_cleanup(environ_before_training)
Run processes cleanup after ddp context to prepare for single device inference. Kill all processes in DDP
besides rank 0.

Return type None

end_training(environ_before_training)
Cleanup after training is done. This is called after the trainer has finished fitting the data. This is called to
update the checkpoint handler state and remove redundant checkpoint files. If running inference on a single
device, this is also called to kill all processes besides rank 0.

Return type None

get_data_module()
Reads the datamodule that should be used for training or valuation from the container. This must be over-
ridden in subclasses.

Return type LightningDataModule

get_multiple_trainloader_mode()

Return type str

init_inference()
Prepare the trainer for running inference on the validation and test set. This chooses a checkpoint, initializes
the PL Trainer object, and chooses the right data module. The hook for running inference on the validation

202 Chapter 37. health_ml Package

hi-ml

set is run (LightningContainer.on_run_extra_validation_epoch) is first called to reflect any changes to the
model or datamodule states before running inference.

Return type None

init_training()
Execute some bookkeeping tasks only once if running distributed and initialize the runner’s trainer object.

Return type None

is_crossval_disabled_or_child_0()
Returns True if the present run is a non-cross-validation run, or child run 0 of a cross-validation run.

Return type bool

run()
Driver function to run a ML experiment

Return type None

run_regression_test()

Return type None

run_training()
The main training loop. It creates the Pytorch model based on the configuration options passed in, creates a
Pytorch Lightning trainer, and trains the model. If a checkpoint was specified, then it loads the checkpoint
before resuming training. The cwd is changed to the outputs folder so that the model can write to current
working directory, and still everything is put into the right place in AzureML (only the contents of the
“outputs” folder is treated as a result file).

Return type None

run_validation()
Run validation on the validation set for all models to save time/memory consuming outputs. This is done
in inference only mode or when the user has requested an extra validation epoch. The cwd is changed to
the outputs folder

Return type None

after_ddp_cleanup(environ_before_training)
Run processes cleanup after ddp context to prepare for single device inference. Kill all processes in DDP
besides rank 0.

Return type None

end_training(environ_before_training)
Cleanup after training is done. This is called after the trainer has finished fitting the data. This is called to
update the checkpoint handler state and remove redundant checkpoint files. If running inference on a single
device, this is also called to kill all processes besides rank 0.

Return type None

get_data_module()
Reads the datamodule that should be used for training or valuation from the container. This must be over-
ridden in subclasses.

Return type LightningDataModule

init_inference()
Prepare the trainer for running inference on the validation and test set. This chooses a checkpoint, initializes
the PL Trainer object, and chooses the right data module. The hook for running inference on the validation

37.1. Classes 203

hi-ml

set is run (LightningContainer.on_run_extra_validation_epoch) is first called to reflect any changes to the
model or datamodule states before running inference.

Return type None

init_training()
Execute some bookkeeping tasks only once if running distributed and initialize the runner’s trainer object.

Return type None

is_crossval_disabled_or_child_0()
Returns True if the present run is a non-cross-validation run, or child run 0 of a cross-validation run.

Return type bool

run()
Driver function to run a ML experiment

Return type None

run_training()
The main training loop. It creates the Pytorch model based on the configuration options passed in, creates a
Pytorch Lightning trainer, and trains the model. If a checkpoint was specified, then it loads the checkpoint
before resuming training. The cwd is changed to the outputs folder so that the model can write to current
working directory, and still everything is put into the right place in AzureML (only the contents of the
“outputs” folder is treated as a result file).

Return type None

run_validation()
Run validation on the validation set for all models to save time/memory consuming outputs. This is done
in inference only mode or when the user has requested an extra validation epoch. The cwd is changed to
the outputs folder

Return type None

37.1.2 Runner

class health_ml.Runner(project_root)
Bases: object

This class contains the high-level logic to start a training run: choose a model configuration by name, submit to
AzureML if needed, or otherwise start the actual training and test loop.

Parameters project_root (Path) – The root folder that contains all of the source code that should
be executed.

Methods Summary

additional_environment_variables()
rtype Dict[str, str]

additional_run_tags(script_params) Gets the set of tags that will be added to the AzureML
run as metadata.

parse_and_load_model() Parses the command line arguments, and creates con-
figuration objects for the model itself, and for the
Azure-related parameters.

continues on next page

204 Chapter 37. health_ml Package

hi-ml

Table 3 – continued from previous page
run() The main entry point for training and testing models

from the commandline.
run_in_situ(azure_run_info) Actually run the AzureML job; this method will typ-

ically run on an Azure VM.
submit_to_azureml_if_needed() Submit a job to AzureML, returning the resulting Run

object, or exiting if we were asked to wait for com-
pletion and the Run did not succeed.

validate() Runs sanity checks on the whole experiment.

Methods Documentation

additional_environment_variables()

Return type Dict[str, str]

additional_run_tags(script_params)
Gets the set of tags that will be added to the AzureML run as metadata.

Parameters script_params (List[str]) – The commandline arguments used to invoke the
present script.

Return type Dict[str, str]

parse_and_load_model()
Parses the command line arguments, and creates configuration objects for the model itself, and for the
Azure-related parameters. Sets self.experiment_config to its proper values. Returns the parser output from
parsing the model commandline arguments.

Return type ParserResult

Returns ParserResult object containing args, overrides and settings

run()
The main entry point for training and testing models from the commandline. This chooses a model to train
via a commandline argument, runs training or testing, and writes all required info to disk and logs.

Return type Tuple[LightningContainer, AzureRunInfo]

Returns a tuple of the LightningContainer object and an AzureRunInfo containing all informa-
tion about the present run (whether running in AzureML or not)

run_in_situ(azure_run_info)
Actually run the AzureML job; this method will typically run on an Azure VM.

Parameters azure_run_info (AzureRunInfo) – Contains all information about the present
run in AzureML, in particular where the

datasets are mounted.

Return type None

submit_to_azureml_if_needed()
Submit a job to AzureML, returning the resulting Run object, or exiting if we were asked to wait for com-
pletion and the Run did not succeed.

Return type AzureRunInfo

37.1. Classes 205

hi-ml

Returns an AzureRunInfo object containing all of the details of the present run. If AzureML is
not specified, the attribute ‘run’ will None, but the object still contains helpful information
about datasets etc

validate()
Runs sanity checks on the whole experiment.

Return type None

additional_run_tags(script_params)
Gets the set of tags that will be added to the AzureML run as metadata.

Parameters script_params (List[str]) – The commandline arguments used to invoke the
present script.

Return type Dict[str, str]

parse_and_load_model()
Parses the command line arguments, and creates configuration objects for the model itself, and for the
Azure-related parameters. Sets self.experiment_config to its proper values. Returns the parser output from
parsing the model commandline arguments.

Return type ParserResult

Returns ParserResult object containing args, overrides and settings

run()
The main entry point for training and testing models from the commandline. This chooses a model to train
via a commandline argument, runs training or testing, and writes all required info to disk and logs.

Return type Tuple[LightningContainer, AzureRunInfo]

Returns a tuple of the LightningContainer object and an AzureRunInfo containing all informa-
tion about the present run (whether running in AzureML or not)

run_in_situ(azure_run_info)
Actually run the AzureML job; this method will typically run on an Azure VM.

Parameters azure_run_info (AzureRunInfo) – Contains all information about the present
run in AzureML, in particular where the

datasets are mounted.

Return type None

submit_to_azureml_if_needed()
Submit a job to AzureML, returning the resulting Run object, or exiting if we were asked to wait for com-
pletion and the Run did not succeed.

Return type AzureRunInfo
Returns an AzureRunInfo object containing all of the details of the present run. If AzureML is

not specified, the attribute ‘run’ will None, but the object still contains helpful information
about datasets etc

validate()
Runs sanity checks on the whole experiment.

Return type None

206 Chapter 37. health_ml Package

CHAPTER

THIRTYEIGHT

INDICES AND TABLES

• genindex

• modindex

• search

207

hi-ml

208 Chapter 38. Indices and tables

PYTHON MODULE INDEX

h
health_azure, 169
health_ml, 199
health_multimodal.common, 118
health_multimodal.common.device, 118
health_multimodal.common.visualization, 118
health_multimodal.image, 95
health_multimodal.image.data.io, 97
health_multimodal.image.data.transforms, 97
health_multimodal.image.inference_engine, 95
health_multimodal.image.model.encoder, 98
health_multimodal.image.model.model, 100
health_multimodal.image.model.modules, 101
health_multimodal.image.model.resnet, 102
health_multimodal.image.model.transformer,

103
health_multimodal.image.model.types, 105
health_multimodal.image.utils, 96
health_multimodal.text, 108
health_multimodal.text.data.io, 110
health_multimodal.text.inference_engine, 108
health_multimodal.text.model.configuration_cxrbert,

111
health_multimodal.text.model.modelling_cxrbert,

111
health_multimodal.text.utils, 109
health_multimodal.vlp, 93
health_multimodal.vlp.inference_engine, 93

209

hi-ml

210 Python Module Index

INDEX

A
additional_environment_variables()

(health_ml.Runner method), 205
additional_run_tags() (health_ml.Runner method),

199, 205, 206
after_ddp_cleanup() (health_ml.TrainingRunner

method), 200, 202, 203
aggregate_hyperdrive_metrics() (in module

health_azure), 171, 192
assert_special_tokens_not_present()

(health_multimodal.text.data.io.TextInput
method), 110

AzureRunInfo (class in health_azure), 169, 194

B
BaseImageModel (class in health_multimodal.image),

106
BaseImageModel (class in

health_multimodal.image.model.model),
100

BertEncoderType (class in
health_multimodal.text.utils), 109

BertProjectionHead (class in
health_multimodal.text.model.modelling_cxrbert),
111

Block (class in health_multimodal.image.model.transformer),
103

C
config_class (health_multimodal.text.CXRBertModel

attribute), 114
config_class (health_multimodal.text.model.modelling_cxrbert.CXRBertModel

attribute), 112
convert_similarity_to_image_size()

(health_multimodal.vlp.ImageTextInferenceEngine
static method), 94

convert_similarity_to_image_size()
(health_multimodal.vlp.inference_engine.ImageTextInferenceEngine
static method), 93

create_aml_run_object() (in module health_azure),
172, 182

create_chest_xray_transform_for_inference()
(in module health_multimodal.image.data.transforms),
97

create_crossval_hyperdrive_config() (in module
health_azure), 172, 192

create_downstream_classifier()
(health_multimodal.image.ImageModel
method), 107

create_downstream_classifier()
(health_multimodal.image.model.model.ImageModel
method), 100

create_run_configuration() (in module
health_azure), 173, 183

create_script_run() (in module health_azure), 174,
184

CXRBertConfig (class in health_multimodal.text), 114
CXRBertConfig (class in

health_multimodal.text.model.configuration_cxrbert),
111

CXRBertModel (class in health_multimodal.text), 114
CXRBertModel (class in

health_multimodal.text.model.modelling_cxrbert),
111

CXRBertOutput (class in health_multimodal.text), 116
CXRBertOutput (class in

health_multimodal.text.model.modelling_cxrbert),
114

CXRBertTokenizer (class in health_multimodal.text),
116

CXRBertTokenizer (class in
health_multimodal.text.model.configuration_cxrbert),
111

D
DatasetConfig (class in health_azure), 169, 195
download_checkpoints_from_run_id() (in module

health_azure), 174, 185
download_files_from_run_id() (in module

health_azure), 174, 184
download_from_datastore() (in module

health_azure), 175, 185

211

hi-ml

E
end_training() (health_ml.TrainingRunner method),

200, 202, 203
ExpandChannels (class in

health_multimodal.image.data.transforms),
97

F
fetch_run() (in module health_azure), 175, 186
forward() (health_multimodal.image.BaseImageModel

method), 106
forward() (health_multimodal.image.ImageModel

method), 107
forward() (health_multimodal.image.model.encoder.ImageEncoder

method), 99
forward() (health_multimodal.image.model.encoder.MultiImageEncoder

method), 99
forward() (health_multimodal.image.model.model.BaseImageModel

method), 100
forward() (health_multimodal.image.model.model.ImageModel

method), 100
forward() (health_multimodal.image.model.model.MultiImageModel

method), 101
forward() (health_multimodal.image.model.modules.MLP

method), 101
forward() (health_multimodal.image.model.modules.MultiTaskModel

method), 102
forward() (health_multimodal.image.model.resnet.ResNetHIML

method), 102
forward() (health_multimodal.image.model.transformer.Block

method), 103
forward() (health_multimodal.image.model.transformer.MultiHeadAttentionLayer

method), 104
forward() (health_multimodal.image.model.transformer.VisionTransformerPooler

method), 105
forward() (health_multimodal.text.CXRBertModel

method), 114
forward() (health_multimodal.text.model.modelling_cxrbert.BertProjectionHead

method), 111
forward() (health_multimodal.text.model.modelling_cxrbert.CXRBertModel

method), 112

G
get_bert_inference() (in module

health_multimodal.text), 117
get_bert_inference() (in module

health_multimodal.text.utils), 109
get_biovil_t_bert() (in module

health_multimodal.text.utils), 109
get_cxr_bert() (in module

health_multimodal.text.utils), 110
get_data_module() (health_ml.TrainingRunner

method), 200, 202, 203

get_embeddings_from_prompt()
(health_multimodal.text.inference_engine.TextInferenceEngine
method), 108

get_embeddings_from_prompt()
(health_multimodal.text.TextInferenceEngine
method), 117

get_encoder_from_type() (in module
health_multimodal.image.model.encoder),
99

get_encoder_output_dim() (in module
health_multimodal.image.model.encoder),
99

get_image_inference() (in module
health_multimodal.image), 107

get_image_inference() (in module
health_multimodal.image.utils), 96

get_module_device() (in module
health_multimodal.common.device), 118

get_most_recent_run() (in module health_azure),
176, 186

get_multiple_trainloader_mode()
(health_ml.TrainingRunner method), 202

get_pairwise_similarities()
(health_multimodal.text.inference_engine.TextInferenceEngine
method), 108

get_pairwise_similarities()
(health_multimodal.text.TextInferenceEngine
method), 117

get_patchwise_projected_embeddings()
(health_multimodal.image.ImageModel
method), 107

get_patchwise_projected_embeddings()
(health_multimodal.image.model.model.ImageModel
method), 100

get_projected_global_embedding()
(health_multimodal.image.ImageInferenceEngine
method), 106

get_projected_global_embedding()
(health_multimodal.image.inference_engine.ImageInferenceEngine
method), 95

get_projected_patch_embeddings()
(health_multimodal.image.ImageInferenceEngine
method), 106

get_projected_patch_embeddings()
(health_multimodal.image.inference_engine.ImageInferenceEngine
method), 95

get_projected_text_embeddings()
(health_multimodal.text.CXRBertModel
method), 116

get_projected_text_embeddings()
(health_multimodal.text.model.modelling_cxrbert.CXRBertModel
method), 114

get_similarity_map_from_raw_data()
(health_multimodal.vlp.ImageTextInferenceEngine

212 Index

hi-ml

method), 94
get_similarity_map_from_raw_data()

(health_multimodal.vlp.inference_engine.ImageTextInferenceEngine
method), 93

get_similarity_score_from_raw_data()
(health_multimodal.vlp.ImageTextInferenceEngine
method), 94

get_similarity_score_from_raw_data()
(health_multimodal.vlp.inference_engine.ImageTextInferenceEngine
method), 94

get_workspace() (in module health_azure), 176, 186

H
health_azure

module, 169
health_azure_package_setup() (in module

health_azure), 176, 194
health_ml

module, 199
health_multimodal.common

module, 118
health_multimodal.common.device

module, 118
health_multimodal.common.visualization

module, 118
health_multimodal.image

module, 95
health_multimodal.image.data.io

module, 97
health_multimodal.image.data.transforms

module, 97
health_multimodal.image.inference_engine

module, 95
health_multimodal.image.model.encoder

module, 98
health_multimodal.image.model.model

module, 100
health_multimodal.image.model.modules

module, 101
health_multimodal.image.model.resnet

module, 102
health_multimodal.image.model.transformer

module, 103
health_multimodal.image.model.types

module, 105
health_multimodal.image.utils

module, 96
health_multimodal.text

module, 108
health_multimodal.text.data.io

module, 110
health_multimodal.text.inference_engine

module, 108
health_multimodal.text.model.configuration_cxrbert

module, 111
health_multimodal.text.model.modelling_cxrbert

module, 111
health_multimodal.text.utils

module, 109
health_multimodal.vlp

module, 93
health_multimodal.vlp.inference_engine

module, 93

I
ImageEncoder (class in

health_multimodal.image.model.encoder),
98

ImageEncoderType (class in health_multimodal.image),
106

ImageEncoderType (class in
health_multimodal.image.model.types), 105

ImageEncoderWeightTypes (class in
health_multimodal.image.model.types), 105

ImageInferenceEngine (class in
health_multimodal.image), 106

ImageInferenceEngine (class in
health_multimodal.image.inference_engine),
95

ImageModel (class in health_multimodal.image), 107
ImageModel (class in health_multimodal.image.model.model),

100
ImageModelOutput (class in

health_multimodal.image.model.types), 105
ImageModelType (class in

health_multimodal.image.utils), 96
ImageTextInferenceEngine (class in

health_multimodal.vlp), 94
ImageTextInferenceEngine (class in

health_multimodal.vlp.inference_engine),
93

infer_resize_params() (in module
health_multimodal.image.data.transforms),
98

init_inference() (health_ml.TrainingRunner
method), 200, 202, 203

init_training() (health_ml.TrainingRunner method),
200, 203, 204

input_datasets (health_azure.AzureRunInfo attribute),
169, 194

is_crossval_disabled_or_child_0()
(health_ml.TrainingRunner method), 200,
203, 204

is_in_eval() (health_multimodal.text.inference_engine.TextInferenceEngine
method), 108

is_in_eval() (health_multimodal.text.TextInferenceEngine
method), 117

Index 213

hi-ml

is_running_in_azure_ml (health_azure.AzureRunInfo
attribute), 169, 195

is_running_in_azure_ml() (in module health_azure),
176, 187

L
load_and_transform_input_image()

(health_multimodal.image.ImageInferenceEngine
method), 106

load_and_transform_input_image()
(health_multimodal.image.inference_engine.ImageInferenceEngine
method), 96

load_image() (in module
health_multimodal.image.data.io), 97

logs_folder (health_azure.AzureRunInfo attribute),
169, 195

M
MLP (class in health_multimodal.image.model.modules),

101
module

health_azure, 169
health_ml, 199
health_multimodal.common, 118
health_multimodal.common.device, 118
health_multimodal.common.visualization,

118
health_multimodal.image, 95
health_multimodal.image.data.io, 97
health_multimodal.image.data.transforms,

97
health_multimodal.image.inference_engine,

95
health_multimodal.image.model.encoder, 98
health_multimodal.image.model.model, 100
health_multimodal.image.model.modules,

101
health_multimodal.image.model.resnet, 102
health_multimodal.image.model.transformer,

103
health_multimodal.image.model.types, 105
health_multimodal.image.utils, 96
health_multimodal.text, 108
health_multimodal.text.data.io, 110
health_multimodal.text.inference_engine,

108
health_multimodal.text.model.configuration_cxrbert,

111
health_multimodal.text.model.modelling_cxrbert,

111
health_multimodal.text.utils, 109
health_multimodal.vlp, 93
health_multimodal.vlp.inference_engine,

93

mount_contexts (health_azure.AzureRunInfo attribute),
169, 195

MultiHeadAttentionLayer (class in
health_multimodal.image.model.transformer),
104

MultiHeadAttentionOutput (class in
health_multimodal.image.model.transformer),
104

MultiImageEncoder (class in
health_multimodal.image.model.encoder),
99

MultiImageModel (class in
health_multimodal.image.model.model),
101

MultiTaskModel (class in
health_multimodal.image.model.modules),
101

O
object_to_yaml() (in module health_azure), 177, 193
output_datasets (health_azure.AzureRunInfo at-

tribute), 169, 195
output_folder (health_azure.AzureRunInfo attribute),

169, 195

P
parse_and_load_model() (health_ml.Runner method),

199, 205, 206
plot_phrase_grounding_similarity_map() (in

module health_multimodal.common.visualization),
118

predict_masked_tokens()
(health_multimodal.text.inference_engine.TextInferenceEngine
method), 108

predict_masked_tokens()
(health_multimodal.text.TextInferenceEngine
method), 117

R
reload_encoder_with_dilation()

(health_multimodal.image.model.encoder.ImageEncoder
method), 99

reload_encoder_with_dilation()
(health_multimodal.image.model.encoder.MultiImageEncoder
method), 99

remap_to_uint8() (in module
health_multimodal.image.data.io), 97

resnet18() (in module
health_multimodal.image.model.resnet),
102

resnet50() (in module
health_multimodal.image.model.resnet),
103

214 Index

hi-ml

ResNetHIML (class in health_multimodal.image.model.resnet),
102

restore_training_mode() (in module
health_multimodal.image.model.encoder),
99

run (health_azure.AzureRunInfo attribute), 169, 195
run() (health_ml.Runner method), 199, 205, 206
run() (health_ml.TrainingRunner method), 200, 203, 204
run_in_situ() (health_ml.Runner method), 199, 205,

206
run_regression_test() (health_ml.TrainingRunner

method), 203
run_training() (health_ml.TrainingRunner method),

201, 203, 204
run_validation() (health_ml.TrainingRunner

method), 201, 203, 204
Runner (class in health_ml), 199, 204

S
set_environment_variables_for_multi_node()

(in module health_azure), 177, 187
set_logging_levels() (in module health_azure), 177,

194
SinePositionEmbedding (class in

health_multimodal.image.model.transformer),
104

split_recovery_id() (in module health_azure), 177,
188

submit_run() (in module health_azure), 177, 188
submit_to_azure_if_needed() (in module

health_azure), 178, 189
submit_to_azureml_if_needed() (health_ml.Runner

method), 199, 205, 206

T
TextInferenceEngine (class in

health_multimodal.text), 116
TextInferenceEngine (class in

health_multimodal.text.inference_engine),
108

TextInput (class in health_multimodal.text.data.io), 110
to() (health_multimodal.vlp.ImageTextInferenceEngine

method), 95
to() (health_multimodal.vlp.inference_engine.ImageTextInferenceEngine

method), 94
to_input_dataset() (health_azure.DatasetConfig

method), 170, 196, 197
to_input_dataset_local()

(health_azure.DatasetConfig method), 170,
196, 197

to_output_dataset() (health_azure.DatasetConfig
method), 170, 196, 197

tokenize_input_prompts()
(health_multimodal.text.data.io.TextInput

method), 110
tokenize_input_prompts()

(health_multimodal.text.inference_engine.TextInferenceEngine
method), 109

tokenize_input_prompts()
(health_multimodal.text.TextInferenceEngine
method), 117

torch_barrier() (in module health_azure), 180, 191
train() (health_multimodal.image.ImageModel

method), 107
train() (health_multimodal.image.model.model.ImageModel

method), 101
TrainingRunner (class in health_ml), 200, 201

U
upload_to_datastore() (in module health_azure),

180, 191

V
validate() (health_ml.Runner method), 200, 206
VisionTransformerPooler (class in

health_multimodal.image.model.transformer),
104

W
write_yaml_to_object() (in module health_azure),

181, 194

Index 215

	First steps: How to run your Python code in the cloud
	Setting up AzureML
	Using the AzureML integration layer
	Essential arguments to submit_to_azure_if_needed
	Additional arguments you should know about
	Conda environments, Alternate pips, Private wheels

	Setting up Azure
	Creating an AzureML workspace via the Azure Portal
	Creating an AzureML workspace via the Azure Command-line Tools
	Documentation
	Collecting the necessary information
	Creating resources
	Creating compute clusters and permissions

	Accessing the workspace

	Connecting to Azure
	Authentication
	Service Principal Authentication
	Creating the Service Principal
	Providing permissions to the Service Principal
	Azure Tenant ID

	Datasets
	Key concepts
	Blob Storage
	AzureML Data Stores
	AzureML Datasets
	Preparing data

	Using the datasets
	Input and output datasets
	Mounting and downloading
	Local execution
	Making a dataset available at a fixed folder location
	Overwriting existing output datasets
	Dataset versions

	Hyperparameter Search via Hyperdrive (AML SDK v1)
	Hyperparameter Search in AML SDK v2
	Using Cheap Low Priority VMs
	Setting up the Compute Cluster
	Behaviour of Low Priority VMs
	Best Practice Guide for Your Jobs
	Writing and Using Recovery Checkpoints

	Additional Optimizers and Other State

	Commandline tools
	Run TensorBoard
	Download files from AML Runs
	Creating your own command line tools
	Defining your own argument types
	Example:

	Downloading from/ uploading to Azure ML
	Download files from an Azure ML Run
	Downloading checkpoint files from a run
	Downloading files from an Azure ML Datastore
	Uploading files to an Azure ML Datastore

	Examples
	Basic integration
	Output files
	Output datasets
	Input datasets
	Including input files in the snapshot
	Creating the dataset in AzureML
	Uploading the input files manually

	Hyperdrive
	Controlling when to submit to AzureML and when not
	Training with k-fold cross validation in Azure ML
	Retrieving the aggregated results of a cross validation/ HyperDrive run
	Modifying checkpoints stored in an AzureML run

	Submitting jobs to Singularity using Amulet
	Install Amulet
	Create an Azure ML Storage Account
	Add your Singularity Workspace
	Create or checkout a project
	Create a configuration file
	Submit the job to Singularity
	To run a specific job from a config
	Running a distributed job
	View your job
	Download the /logs outputs of your job

	Example Trainer Script for Amulet
	Logging metrics when training models in and outside AzureML
	Basics
	Using PyTorch Lightning
	Logging to AzureML when running outside AzureML
	Making logging consistent when training with PyTorch Lightning
	Logging learning rates

	Performance Diagnostics
	AzureMLProgressBar
	BatchTimeCallback
	Caveats
	Usage example

	Running ML experiments with hi-ml
	Specifying the model to run
	Running ML experiments in Azure ML
	Setup - creating your model config file
	Outputting files during training
	Trainer arguments
	Optimizer and LR scheduler arguments

	Run inference with a pretrained model
	Specifying the checkpoint to use
	Running inference on the test set
	Running inference on a full dataset

	Resume training from a given checkpoint
	Logging to AzureML when running outside AzureML
	Starting experiments with different seeds
	Common problems with running in AML

	Checkpoint Utils
	Use cases

	HI-ML Tools for Computational Pathology
	Setting up your computer
	Onboarding to Azure
	Creating datasets
	Training models
	Visualizing data and results in Digital Slide Archive DSA
	New Model configurations
	Mount datasets

	Using Public Datasets PANDA and TCGA-Crck
	Setting up your storage account and tools
	PANDA Dataset
	Uploading

	TCGA-Crck Dataset
	Making your storage account accessible to AzureML

	DeepMIL model for tumor grading on PANDA dataset
	Background
	Preparations
	Running the model as-is
	Expected results
	Model variants
	Cross-validation

	DeepMIL model for genetic mutation on TCGA-CRCK
	Background
	Preparations
	Running the model
	Expected results

	Pre-training of an image encoder using self-supervised learning
	Example: Train an image encoder using SSL on the TCGA-CRCk locally
	Train on Azure
	Using your own dataset

	Digital Slide Archive
	Azure deployment
	Host
	Storage
	Authentication
	Authorization
	Creating API Keys

	Visualizing Azure Machine Learning results
	Upload into a folder

	Creating montages from whole slide images (WSIs)
	Types of data for montage creation
	Setup
	Creating montages from a folder with files
	Creating montages from a dataset.csv file
	Using inclusion or exclusion lists

	Other commandline options
	Running in Azure

	Histopathology Scripts
	create_montage
	Named Arguments

	HI-ML Multimodal Toolbox
	Getting started
	Installation
	Development

	Examples
	Hugging Face 🤗
	Credit
	BibTeX

	API
	Vision-language processing (VLP)
	health_multimodal.vlp
	health_multimodal.vlp.inference_engine

	Image processing
	health_multimodal.image
	health_multimodal.image.inference_engine
	health_multimodal.image.utils
	health_multimodal.image.data.io
	health_multimodal.image.data.transforms
	health_multimodal.image.model.encoder
	health_multimodal.image.model.model
	health_multimodal.image.model.modules
	health_multimodal.image.model.resnet
	health_multimodal.image.model.transformer
	health_multimodal.image.model.types

	Text processing
	health_multimodal.text
	health_multimodal.text.inference_engine
	health_multimodal.text.utils
	health_multimodal.text.data.io
	health_multimodal.text.model.configuration_cxrbert
	health_multimodal.text.model.modelling_cxrbert

	Common utils
	health_multimodal.common
	health_multimodal.common.device
	health_multimodal.common.visualization

	Training of self-supervised models
	Multi-dataset support
	Quick start guide
	Example 1: training a SimCLR or BYOL model on CIFAR10
	Example 2: training a BYOL model on Chest-Xray data
	Step 0: Get the data
	If you run on your local machine:
	If you run on AML
	Step 1: Update your model config
	Step 2: Launch the training job

	Configuring your own SSL models:
	About SSLContainer configuration
	Creating your own datamodules:
	About the augmentation configuration yaml file

	Finetuning a linear head on top of a pretrained SSL model.
	Example for CIFAR
	Example for CXR

	Contributing to this toolbox
	Design and Coding Guidelines
	Design Phase
	Setting up your development environment
	Coding Guidelines
	Naming
	Static Analysis, Linting and Styling
	Black styling
	Black VS Code Integration
	Black pre-commit hook

	Documentation

	Testing
	Why do we write unit tests?
	Testing Do’s / Don’ts
	Testing of Scripts

	What not to commit
	Jupyter Notebooks

	Review / Pull Requests
	Scope of Pull Requests
	Pull Request Process
	Pull Request Titles

	Notes on Branching

	Setting up the Development Environment
	Development environment
	Opening the repository
	Creating a Conda environment
	Installing pyright
	Using specific versions of hi-ml in your Python environments
	Common things to do
	Building documentation
	Setting up your AzureML workspace
	Creating and Deleting Docker Environments in AzureML
	Testing
	Test discovery in VSCode

	Creating a New Release
	Troubleshooting
	Debugging a test in VSCode fails on Windows

	Software Development Process
	Version Control
	Development Process
	Initiation
	Prototyping
	Finalization

	Software Configuration Management
	Defect Handling
	Updates to the Development Process

	Debugging and Profiling
	Debugging within VS Code
	Debugging configs
	PyTorch Lightning flags for debugging and quick runs

	Profiling Machine Learning Pipelines
	Interpret PyTorch Profiling outputs via Tensorboard
	Advanced profiling arguments

	Learn More

	Loading Images as Torch Tensors
	matplotlib
	OpenCV
	Pillow
	SciPy
	SimpleITK
	scikit-image
	numpy
	torch
	Results
	RGB Images
	Greyscale Images

	Loading Images as Numpy Arrays
	Pillow
	SciPy

	Results
	RGB Images
	Greyscale Images

	Whole Slide Images
	OpenSlide
	cuCIM
	Performance
	Loading and saving at lowest resolution
	Loading and saving as tiles at the medium resolution

	Changelog
	Changelog for Versions before March 2022
	0.1.14
	Added
	Changed
	Fixed
	Removed
	Deprecated

	0.1.13
	Added
	Changed
	Fixed
	Removed
	Deprecated

	0.1.12
	Added
	Changed
	Fixed
	Removed
	Deprecated

	0.1.11
	Added
	Changed
	Fixed
	Removed
	Deprecated

	0.1.10
	Added
	Changed
	Fixed
	Removed
	Deprecated

	0.1.9 (2021-10-20)
	Added
	Changed
	Fixed

	0.1.8 (2021-10-06)
	Added
	Changed
	Fixed

	0.1.7 (2021-10-04)
	Added
	Changed
	Fixed

	0.1.4 (2021-09-15)

	health_azure Package
	Functions
	create_aml_run_object
	create_run_configuration
	create_script_run
	download_files_from_run_id
	download_checkpoints_from_run_id
	download_from_datastore
	fetch_run
	get_most_recent_run
	get_workspace
	is_running_in_azure_ml
	set_environment_variables_for_multi_node
	split_recovery_id
	submit_run
	submit_to_azure_if_needed
	torch_barrier
	upload_to_datastore
	create_crossval_hyperdrive_config
	aggregate_hyperdrive_metrics
	object_to_yaml
	write_yaml_to_object
	health_azure_package_setup
	set_logging_levels

	Classes
	AzureRunInfo
	DatasetConfig

	health_ml Package
	Classes
	TrainingRunner
	Runner

	Indices and tables
	Python Module Index
	Index

